Extensions 1→N→G→Q→1 with N=D6 and Q=C2xF5

Direct product G=NxQ with N=D6 and Q=C2xF5
dρLabelID
C22xS3xF560C2^2xS3xF5480,1197

Semidirect products G=N:Q with N=D6 and Q=C2xF5
extensionφ:Q→Out NdρLabelID
D6:1(C2xF5) = F5xD12φ: C2xF5/F5C2 ⊆ Out D6608+D6:1(C2xF5)480,995
D6:2(C2xF5) = D60:3C4φ: C2xF5/F5C2 ⊆ Out D6608+D6:2(C2xF5)480,997
D6:3(C2xF5) = F5xC3:D4φ: C2xF5/F5C2 ⊆ Out D6608D6:3(C2xF5)480,1010
D6:4(C2xF5) = C3:D4:F5φ: C2xF5/F5C2 ⊆ Out D6608D6:4(C2xF5)480,1012
D6:5(C2xF5) = C2xD6:F5φ: C2xF5/D10C2 ⊆ Out D6120D6:5(C2xF5)480,1000
D6:6(C2xF5) = S3xC22:F5φ: C2xF5/D10C2 ⊆ Out D6608+D6:6(C2xF5)480,1011

Non-split extensions G=N.Q with N=D6 and Q=C2xF5
extensionφ:Q→Out NdρLabelID
D6.1(C2xF5) = D12.2F5φ: C2xF5/F5C2 ⊆ Out D62408-D6.1(C2xF5)480,987
D6.2(C2xF5) = D12.F5φ: C2xF5/F5C2 ⊆ Out D62408-D6.2(C2xF5)480,989
D6.3(C2xF5) = C5:C8.D6φ: C2xF5/F5C2 ⊆ Out D62408D6.3(C2xF5)480,1003
D6.4(C2xF5) = D15:C8:C2φ: C2xF5/F5C2 ⊆ Out D62408D6.4(C2xF5)480,1005
D6.5(C2xF5) = C4:F5:3S3φ: C2xF5/D10C2 ⊆ Out D61208D6.5(C2xF5)480,983
D6.6(C2xF5) = (C4xS3):F5φ: C2xF5/D10C2 ⊆ Out D61208D6.6(C2xF5)480,985
D6.7(C2xF5) = D15:M4(2)φ: C2xF5/D10C2 ⊆ Out D61208D6.7(C2xF5)480,991
D6.8(C2xF5) = C5:C8:D6φ: C2xF5/D10C2 ⊆ Out D61208D6.8(C2xF5)480,993
D6.9(C2xF5) = S3xC22.F5φ: C2xF5/D10C2 ⊆ Out D61208-D6.9(C2xF5)480,1004
D6.10(C2xF5) = C2xD6.F5φ: C2xF5/D10C2 ⊆ Out D6240D6.10(C2xF5)480,1008
D6.11(C2xF5) = S3xD5:C8φ: trivial image1208D6.11(C2xF5)480,986
D6.12(C2xF5) = S3xC4.F5φ: trivial image1208D6.12(C2xF5)480,988
D6.13(C2xF5) = C4xS3xF5φ: trivial image608D6.13(C2xF5)480,994
D6.14(C2xF5) = S3xC4:F5φ: trivial image608D6.14(C2xF5)480,996
D6.15(C2xF5) = C2xS3xC5:C8φ: trivial image240D6.15(C2xF5)480,1002

׿
x
:
Z
F
o
wr
Q
<