Copied to
clipboard

G = S3×D5⋊C8order 480 = 25·3·5

Direct product of S3 and D5⋊C8

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: S3×D5⋊C8, (S3×D5)⋊C8, D5⋊(S3×C8), C5⋊C88D6, D15⋊C87C2, D151(C2×C8), C151(C22×C8), (C4×S3).6F5, C4.31(S3×F5), (S3×C20).5C4, C20.31(C4×S3), C60.31(C2×C4), (C4×D5).73D6, D30.7(C2×C4), (C4×D15).5C4, D6.11(C2×F5), C12.38(C2×F5), C60.C44C2, C15⋊C85C22, C6.5(C22×F5), D10.20(C4×S3), C30.5(C22×C4), (D5×Dic3).4C4, Dic3.12(C2×F5), Dic15.9(C2×C4), (D5×C12).65C22, D30.C2.12C22, (C3×Dic5).23C23, Dic5.25(C22×S3), (S3×Dic5).12C22, C51(S3×C2×C8), (S3×C5⋊C8)⋊7C2, (C3×D5)⋊(C2×C8), C31(C2×D5⋊C8), C2.1(C2×S3×F5), C10.5(S3×C2×C4), (C2×S3×D5).4C4, (C5×S3)⋊1(C2×C8), (C3×D5⋊C8)⋊4C2, (C3×C5⋊C8)⋊5C22, (C4×S3×D5).10C2, (S3×C10).7(C2×C4), (C6×D5).14(C2×C4), (C5×Dic3).9(C2×C4), SmallGroup(480,986)

Series: Derived Chief Lower central Upper central

C1C15 — S3×D5⋊C8
C1C5C15C30C3×Dic5C3×C5⋊C8S3×C5⋊C8 — S3×D5⋊C8
C15 — S3×D5⋊C8
C1C4

Generators and relations for S3×D5⋊C8
 G = < a,b,c,d,e | a3=b2=c5=d2=e8=1, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd=c-1, ece-1=c3, ede-1=c2d >

Subgroups: 676 in 152 conjugacy classes, 60 normal (36 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, S3, C6, C6, C8, C2×C4, C23, D5, D5, C10, C10, Dic3, Dic3, C12, C12, D6, D6, C2×C6, C15, C2×C8, C22×C4, Dic5, Dic5, C20, C20, D10, D10, C2×C10, C3⋊C8, C24, C4×S3, C4×S3, C2×Dic3, C2×C12, C22×S3, C5×S3, C3×D5, D15, C30, C22×C8, C5⋊C8, C5⋊C8, C4×D5, C4×D5, C2×Dic5, C2×C20, C22×D5, S3×C8, C2×C3⋊C8, C2×C24, S3×C2×C4, C5×Dic3, C3×Dic5, Dic15, C60, S3×D5, C6×D5, S3×C10, D30, D5⋊C8, D5⋊C8, C2×C5⋊C8, C2×C4×D5, S3×C2×C8, C3×C5⋊C8, C15⋊C8, D5×Dic3, S3×Dic5, D30.C2, D5×C12, S3×C20, C4×D15, C2×S3×D5, C2×D5⋊C8, S3×C5⋊C8, D15⋊C8, C3×D5⋊C8, C60.C4, C4×S3×D5, S3×D5⋊C8
Quotients: C1, C2, C4, C22, S3, C8, C2×C4, C23, D6, C2×C8, C22×C4, F5, C4×S3, C22×S3, C22×C8, C2×F5, S3×C8, S3×C2×C4, D5⋊C8, C22×F5, S3×C2×C8, S3×F5, C2×D5⋊C8, C2×S3×F5, S3×D5⋊C8

Smallest permutation representation of S3×D5⋊C8
On 120 points
Generators in S120
(1 26 50)(2 27 51)(3 28 52)(4 29 53)(5 30 54)(6 31 55)(7 32 56)(8 25 49)(9 24 60)(10 17 61)(11 18 62)(12 19 63)(13 20 64)(14 21 57)(15 22 58)(16 23 59)(33 41 113)(34 42 114)(35 43 115)(36 44 116)(37 45 117)(38 46 118)(39 47 119)(40 48 120)(65 109 92)(66 110 93)(67 111 94)(68 112 95)(69 105 96)(70 106 89)(71 107 90)(72 108 91)(73 88 104)(74 81 97)(75 82 98)(76 83 99)(77 84 100)(78 85 101)(79 86 102)(80 87 103)
(1 5)(2 6)(3 7)(4 8)(9 64)(10 57)(11 58)(12 59)(13 60)(14 61)(15 62)(16 63)(17 21)(18 22)(19 23)(20 24)(25 53)(26 54)(27 55)(28 56)(29 49)(30 50)(31 51)(32 52)(33 45)(34 46)(35 47)(36 48)(37 41)(38 42)(39 43)(40 44)(65 105)(66 106)(67 107)(68 108)(69 109)(70 110)(71 111)(72 112)(73 100)(74 101)(75 102)(76 103)(77 104)(78 97)(79 98)(80 99)(81 85)(82 86)(83 87)(84 88)(89 93)(90 94)(91 95)(92 96)(113 117)(114 118)(115 119)(116 120)
(1 24 88 113 96)(2 114 17 89 81)(3 90 115 82 18)(4 83 91 19 116)(5 20 84 117 92)(6 118 21 93 85)(7 94 119 86 22)(8 87 95 23 120)(9 73 41 105 50)(10 106 74 51 42)(11 52 107 43 75)(12 44 53 76 108)(13 77 45 109 54)(14 110 78 55 46)(15 56 111 47 79)(16 48 49 80 112)(25 103 68 59 40)(26 60 104 33 69)(27 34 61 70 97)(28 71 35 98 62)(29 99 72 63 36)(30 64 100 37 65)(31 38 57 66 101)(32 67 39 102 58)
(1 96)(2 81)(3 18)(4 116)(5 92)(6 85)(7 22)(8 120)(9 41)(11 52)(12 76)(13 45)(15 56)(16 80)(19 83)(20 117)(23 87)(24 113)(25 40)(26 69)(27 97)(28 62)(29 36)(30 65)(31 101)(32 58)(33 60)(34 70)(37 64)(38 66)(42 106)(44 53)(46 110)(48 49)(50 105)(51 74)(54 109)(55 78)(59 103)(63 99)(67 102)(71 98)(75 107)(79 111)(82 90)(86 94)(89 114)(93 118)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)

G:=sub<Sym(120)| (1,26,50)(2,27,51)(3,28,52)(4,29,53)(5,30,54)(6,31,55)(7,32,56)(8,25,49)(9,24,60)(10,17,61)(11,18,62)(12,19,63)(13,20,64)(14,21,57)(15,22,58)(16,23,59)(33,41,113)(34,42,114)(35,43,115)(36,44,116)(37,45,117)(38,46,118)(39,47,119)(40,48,120)(65,109,92)(66,110,93)(67,111,94)(68,112,95)(69,105,96)(70,106,89)(71,107,90)(72,108,91)(73,88,104)(74,81,97)(75,82,98)(76,83,99)(77,84,100)(78,85,101)(79,86,102)(80,87,103), (1,5)(2,6)(3,7)(4,8)(9,64)(10,57)(11,58)(12,59)(13,60)(14,61)(15,62)(16,63)(17,21)(18,22)(19,23)(20,24)(25,53)(26,54)(27,55)(28,56)(29,49)(30,50)(31,51)(32,52)(33,45)(34,46)(35,47)(36,48)(37,41)(38,42)(39,43)(40,44)(65,105)(66,106)(67,107)(68,108)(69,109)(70,110)(71,111)(72,112)(73,100)(74,101)(75,102)(76,103)(77,104)(78,97)(79,98)(80,99)(81,85)(82,86)(83,87)(84,88)(89,93)(90,94)(91,95)(92,96)(113,117)(114,118)(115,119)(116,120), (1,24,88,113,96)(2,114,17,89,81)(3,90,115,82,18)(4,83,91,19,116)(5,20,84,117,92)(6,118,21,93,85)(7,94,119,86,22)(8,87,95,23,120)(9,73,41,105,50)(10,106,74,51,42)(11,52,107,43,75)(12,44,53,76,108)(13,77,45,109,54)(14,110,78,55,46)(15,56,111,47,79)(16,48,49,80,112)(25,103,68,59,40)(26,60,104,33,69)(27,34,61,70,97)(28,71,35,98,62)(29,99,72,63,36)(30,64,100,37,65)(31,38,57,66,101)(32,67,39,102,58), (1,96)(2,81)(3,18)(4,116)(5,92)(6,85)(7,22)(8,120)(9,41)(11,52)(12,76)(13,45)(15,56)(16,80)(19,83)(20,117)(23,87)(24,113)(25,40)(26,69)(27,97)(28,62)(29,36)(30,65)(31,101)(32,58)(33,60)(34,70)(37,64)(38,66)(42,106)(44,53)(46,110)(48,49)(50,105)(51,74)(54,109)(55,78)(59,103)(63,99)(67,102)(71,98)(75,107)(79,111)(82,90)(86,94)(89,114)(93,118), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)>;

G:=Group( (1,26,50)(2,27,51)(3,28,52)(4,29,53)(5,30,54)(6,31,55)(7,32,56)(8,25,49)(9,24,60)(10,17,61)(11,18,62)(12,19,63)(13,20,64)(14,21,57)(15,22,58)(16,23,59)(33,41,113)(34,42,114)(35,43,115)(36,44,116)(37,45,117)(38,46,118)(39,47,119)(40,48,120)(65,109,92)(66,110,93)(67,111,94)(68,112,95)(69,105,96)(70,106,89)(71,107,90)(72,108,91)(73,88,104)(74,81,97)(75,82,98)(76,83,99)(77,84,100)(78,85,101)(79,86,102)(80,87,103), (1,5)(2,6)(3,7)(4,8)(9,64)(10,57)(11,58)(12,59)(13,60)(14,61)(15,62)(16,63)(17,21)(18,22)(19,23)(20,24)(25,53)(26,54)(27,55)(28,56)(29,49)(30,50)(31,51)(32,52)(33,45)(34,46)(35,47)(36,48)(37,41)(38,42)(39,43)(40,44)(65,105)(66,106)(67,107)(68,108)(69,109)(70,110)(71,111)(72,112)(73,100)(74,101)(75,102)(76,103)(77,104)(78,97)(79,98)(80,99)(81,85)(82,86)(83,87)(84,88)(89,93)(90,94)(91,95)(92,96)(113,117)(114,118)(115,119)(116,120), (1,24,88,113,96)(2,114,17,89,81)(3,90,115,82,18)(4,83,91,19,116)(5,20,84,117,92)(6,118,21,93,85)(7,94,119,86,22)(8,87,95,23,120)(9,73,41,105,50)(10,106,74,51,42)(11,52,107,43,75)(12,44,53,76,108)(13,77,45,109,54)(14,110,78,55,46)(15,56,111,47,79)(16,48,49,80,112)(25,103,68,59,40)(26,60,104,33,69)(27,34,61,70,97)(28,71,35,98,62)(29,99,72,63,36)(30,64,100,37,65)(31,38,57,66,101)(32,67,39,102,58), (1,96)(2,81)(3,18)(4,116)(5,92)(6,85)(7,22)(8,120)(9,41)(11,52)(12,76)(13,45)(15,56)(16,80)(19,83)(20,117)(23,87)(24,113)(25,40)(26,69)(27,97)(28,62)(29,36)(30,65)(31,101)(32,58)(33,60)(34,70)(37,64)(38,66)(42,106)(44,53)(46,110)(48,49)(50,105)(51,74)(54,109)(55,78)(59,103)(63,99)(67,102)(71,98)(75,107)(79,111)(82,90)(86,94)(89,114)(93,118), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120) );

G=PermutationGroup([[(1,26,50),(2,27,51),(3,28,52),(4,29,53),(5,30,54),(6,31,55),(7,32,56),(8,25,49),(9,24,60),(10,17,61),(11,18,62),(12,19,63),(13,20,64),(14,21,57),(15,22,58),(16,23,59),(33,41,113),(34,42,114),(35,43,115),(36,44,116),(37,45,117),(38,46,118),(39,47,119),(40,48,120),(65,109,92),(66,110,93),(67,111,94),(68,112,95),(69,105,96),(70,106,89),(71,107,90),(72,108,91),(73,88,104),(74,81,97),(75,82,98),(76,83,99),(77,84,100),(78,85,101),(79,86,102),(80,87,103)], [(1,5),(2,6),(3,7),(4,8),(9,64),(10,57),(11,58),(12,59),(13,60),(14,61),(15,62),(16,63),(17,21),(18,22),(19,23),(20,24),(25,53),(26,54),(27,55),(28,56),(29,49),(30,50),(31,51),(32,52),(33,45),(34,46),(35,47),(36,48),(37,41),(38,42),(39,43),(40,44),(65,105),(66,106),(67,107),(68,108),(69,109),(70,110),(71,111),(72,112),(73,100),(74,101),(75,102),(76,103),(77,104),(78,97),(79,98),(80,99),(81,85),(82,86),(83,87),(84,88),(89,93),(90,94),(91,95),(92,96),(113,117),(114,118),(115,119),(116,120)], [(1,24,88,113,96),(2,114,17,89,81),(3,90,115,82,18),(4,83,91,19,116),(5,20,84,117,92),(6,118,21,93,85),(7,94,119,86,22),(8,87,95,23,120),(9,73,41,105,50),(10,106,74,51,42),(11,52,107,43,75),(12,44,53,76,108),(13,77,45,109,54),(14,110,78,55,46),(15,56,111,47,79),(16,48,49,80,112),(25,103,68,59,40),(26,60,104,33,69),(27,34,61,70,97),(28,71,35,98,62),(29,99,72,63,36),(30,64,100,37,65),(31,38,57,66,101),(32,67,39,102,58)], [(1,96),(2,81),(3,18),(4,116),(5,92),(6,85),(7,22),(8,120),(9,41),(11,52),(12,76),(13,45),(15,56),(16,80),(19,83),(20,117),(23,87),(24,113),(25,40),(26,69),(27,97),(28,62),(29,36),(30,65),(31,101),(32,58),(33,60),(34,70),(37,64),(38,66),(42,106),(44,53),(46,110),(48,49),(50,105),(51,74),(54,109),(55,78),(59,103),(63,99),(67,102),(71,98),(75,107),(79,111),(82,90),(86,94),(89,114),(93,118)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120)]])

60 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G4H 5 6A6B6C8A···8H8I···8P10A10B10C12A12B12C12D 15 20A20B20C20D24A···24H 30 60A60B
order1222222234444444456668···88···810101012121212152020202024···24306060
size1133551515211335515154210105···515···1541212221010844121210···10888

60 irreducible representations

dim1111111111122222244444888
type+++++++++++++++
imageC1C2C2C2C2C2C4C4C4C4C8S3D6D6C4×S3C4×S3S3×C8F5C2×F5C2×F5C2×F5D5⋊C8S3×F5C2×S3×F5S3×D5⋊C8
kernelS3×D5⋊C8S3×C5⋊C8D15⋊C8C3×D5⋊C8C60.C4C4×S3×D5D5×Dic3S3×C20C4×D15C2×S3×D5S3×D5D5⋊C8C5⋊C8C4×D5C20D10D5C4×S3Dic3C12D6S3C4C2C1
# reps12211122221612122811114112

Matrix representation of S3×D5⋊C8 in GL6(𝔽241)

2402400000
100000
001000
000100
000010
000001
,
100000
2402400000
00240000
00024000
00002400
00000240
,
100000
010000
00240240240240
001000
000100
000010
,
24000000
02400000
000010
000100
001000
00240240240240
,
17700000
01770000
0001712171
007207070
007070072
0017121710

G:=sub<GL(6,GF(241))| [240,1,0,0,0,0,240,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,240,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,240,0,0,0,0,0,0,240],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,240,1,0,0,0,0,240,0,1,0,0,0,240,0,0,1,0,0,240,0,0,0],[240,0,0,0,0,0,0,240,0,0,0,0,0,0,0,0,1,240,0,0,0,1,0,240,0,0,1,0,0,240,0,0,0,0,0,240],[177,0,0,0,0,0,0,177,0,0,0,0,0,0,0,72,70,171,0,0,171,0,70,2,0,0,2,70,0,171,0,0,171,70,72,0] >;

S3×D5⋊C8 in GAP, Magma, Sage, TeX

S_3\times D_5\rtimes C_8
% in TeX

G:=Group("S3xD5:C8");
// GroupNames label

G:=SmallGroup(480,986);
// by ID

G=gap.SmallGroup(480,986);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,56,100,80,1356,9414,2379]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^2=c^5=d^2=e^8=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d=c^-1,e*c*e^-1=c^3,e*d*e^-1=c^2*d>;
// generators/relations

׿
×
𝔽