Extensions 1→N→G→Q→1 with N=C3 and Q=D10.13D4

Direct product G=N×Q with N=C3 and Q=D10.13D4
dρLabelID
C3×D10.13D4240C3xD10.13D4480,687

Semidirect products G=N:Q with N=C3 and Q=D10.13D4
extensionφ:Q→Aut NdρLabelID
C31(D10.13D4) = D30.6D4φ: D10.13D4/C10.D4C2 ⊆ Aut C3240C3:1(D10.13D4)480,509
C32(D10.13D4) = D30.34D4φ: D10.13D4/D10⋊C4C2 ⊆ Aut C3240C3:2(D10.13D4)480,430
C33(D10.13D4) = D30.D4φ: D10.13D4/D10⋊C4C2 ⊆ Aut C3240C3:3(D10.13D4)480,432
C34(D10.13D4) = D10.16D12φ: D10.13D4/D10⋊C4C2 ⊆ Aut C3240C3:4(D10.13D4)480,489
C35(D10.13D4) = D30.29D4φ: D10.13D4/C5×C4⋊C4C2 ⊆ Aut C3240C3:5(D10.13D4)480,859
C36(D10.13D4) = Dic3⋊C4⋊D5φ: D10.13D4/C2×C4×D5C2 ⊆ Aut C3240C3:6(D10.13D4)480,424
C37(D10.13D4) = (C6×D5).D4φ: D10.13D4/C2×D20C2 ⊆ Aut C3240C3:7(D10.13D4)480,483


׿
×
𝔽