metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D10.13D4, C4⋊C4⋊2D5, C2.12(D4×D5), (C2×D20).4C2, C10.25(C2×D4), (C2×C4).11D10, C10.D4⋊6C2, D10⋊C4⋊13C2, C10.12(C4○D4), C2.14(C4○D20), (C2×C20).57C22, (C2×C10).35C23, C2.5(Q8⋊2D5), C5⋊3(C22.D4), (C22×D5).6C22, C22.49(C22×D5), (C2×Dic5).11C22, (C5×C4⋊C4)⋊5C2, (C2×C4×D5)⋊13C2, SmallGroup(160,115)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D10.13D4
G = < a,b,c,d | a10=b2=c4=1, d2=a5, bab=a-1, ac=ca, ad=da, cbc-1=dbd-1=a5b, dcd-1=c-1 >
Subgroups: 288 in 78 conjugacy classes, 31 normal (29 characteristic)
C1, C2, C2, C4, C22, C22, C5, C2×C4, C2×C4, D4, C23, D5, C10, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×D4, Dic5, C20, D10, D10, C2×C10, C22.D4, C4×D5, D20, C2×Dic5, C2×C20, C22×D5, C10.D4, D10⋊C4, C5×C4⋊C4, C2×C4×D5, C2×D20, D10.13D4
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C4○D4, D10, C22.D4, C22×D5, C4○D20, D4×D5, Q8⋊2D5, D10.13D4
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 20)(7 19)(8 18)(9 17)(10 16)(21 78)(22 77)(23 76)(24 75)(25 74)(26 73)(27 72)(28 71)(29 80)(30 79)(31 63)(32 62)(33 61)(34 70)(35 69)(36 68)(37 67)(38 66)(39 65)(40 64)(41 53)(42 52)(43 51)(44 60)(45 59)(46 58)(47 57)(48 56)(49 55)(50 54)
(1 50 30 40)(2 41 21 31)(3 42 22 32)(4 43 23 33)(5 44 24 34)(6 45 25 35)(7 46 26 36)(8 47 27 37)(9 48 28 38)(10 49 29 39)(11 55 75 65)(12 56 76 66)(13 57 77 67)(14 58 78 68)(15 59 79 69)(16 60 80 70)(17 51 71 61)(18 52 72 62)(19 53 73 63)(20 54 74 64)
(1 11 6 16)(2 12 7 17)(3 13 8 18)(4 14 9 19)(5 15 10 20)(21 76 26 71)(22 77 27 72)(23 78 28 73)(24 79 29 74)(25 80 30 75)(31 56 36 51)(32 57 37 52)(33 58 38 53)(34 59 39 54)(35 60 40 55)(41 66 46 61)(42 67 47 62)(43 68 48 63)(44 69 49 64)(45 70 50 65)
G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,15)(2,14)(3,13)(4,12)(5,11)(6,20)(7,19)(8,18)(9,17)(10,16)(21,78)(22,77)(23,76)(24,75)(25,74)(26,73)(27,72)(28,71)(29,80)(30,79)(31,63)(32,62)(33,61)(34,70)(35,69)(36,68)(37,67)(38,66)(39,65)(40,64)(41,53)(42,52)(43,51)(44,60)(45,59)(46,58)(47,57)(48,56)(49,55)(50,54), (1,50,30,40)(2,41,21,31)(3,42,22,32)(4,43,23,33)(5,44,24,34)(6,45,25,35)(7,46,26,36)(8,47,27,37)(9,48,28,38)(10,49,29,39)(11,55,75,65)(12,56,76,66)(13,57,77,67)(14,58,78,68)(15,59,79,69)(16,60,80,70)(17,51,71,61)(18,52,72,62)(19,53,73,63)(20,54,74,64), (1,11,6,16)(2,12,7,17)(3,13,8,18)(4,14,9,19)(5,15,10,20)(21,76,26,71)(22,77,27,72)(23,78,28,73)(24,79,29,74)(25,80,30,75)(31,56,36,51)(32,57,37,52)(33,58,38,53)(34,59,39,54)(35,60,40,55)(41,66,46,61)(42,67,47,62)(43,68,48,63)(44,69,49,64)(45,70,50,65)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,15)(2,14)(3,13)(4,12)(5,11)(6,20)(7,19)(8,18)(9,17)(10,16)(21,78)(22,77)(23,76)(24,75)(25,74)(26,73)(27,72)(28,71)(29,80)(30,79)(31,63)(32,62)(33,61)(34,70)(35,69)(36,68)(37,67)(38,66)(39,65)(40,64)(41,53)(42,52)(43,51)(44,60)(45,59)(46,58)(47,57)(48,56)(49,55)(50,54), (1,50,30,40)(2,41,21,31)(3,42,22,32)(4,43,23,33)(5,44,24,34)(6,45,25,35)(7,46,26,36)(8,47,27,37)(9,48,28,38)(10,49,29,39)(11,55,75,65)(12,56,76,66)(13,57,77,67)(14,58,78,68)(15,59,79,69)(16,60,80,70)(17,51,71,61)(18,52,72,62)(19,53,73,63)(20,54,74,64), (1,11,6,16)(2,12,7,17)(3,13,8,18)(4,14,9,19)(5,15,10,20)(21,76,26,71)(22,77,27,72)(23,78,28,73)(24,79,29,74)(25,80,30,75)(31,56,36,51)(32,57,37,52)(33,58,38,53)(34,59,39,54)(35,60,40,55)(41,66,46,61)(42,67,47,62)(43,68,48,63)(44,69,49,64)(45,70,50,65) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,20),(7,19),(8,18),(9,17),(10,16),(21,78),(22,77),(23,76),(24,75),(25,74),(26,73),(27,72),(28,71),(29,80),(30,79),(31,63),(32,62),(33,61),(34,70),(35,69),(36,68),(37,67),(38,66),(39,65),(40,64),(41,53),(42,52),(43,51),(44,60),(45,59),(46,58),(47,57),(48,56),(49,55),(50,54)], [(1,50,30,40),(2,41,21,31),(3,42,22,32),(4,43,23,33),(5,44,24,34),(6,45,25,35),(7,46,26,36),(8,47,27,37),(9,48,28,38),(10,49,29,39),(11,55,75,65),(12,56,76,66),(13,57,77,67),(14,58,78,68),(15,59,79,69),(16,60,80,70),(17,51,71,61),(18,52,72,62),(19,53,73,63),(20,54,74,64)], [(1,11,6,16),(2,12,7,17),(3,13,8,18),(4,14,9,19),(5,15,10,20),(21,76,26,71),(22,77,27,72),(23,78,28,73),(24,79,29,74),(25,80,30,75),(31,56,36,51),(32,57,37,52),(33,58,38,53),(34,59,39,54),(35,60,40,55),(41,66,46,61),(42,67,47,62),(43,68,48,63),(44,69,49,64),(45,70,50,65)]])
D10.13D4 is a maximal subgroup of
C10.2- 1+4 C10.112+ 1+4 C10.62- 1+4 C42⋊10D10 C42.93D10 C42.100D10 C42.104D10 C42⋊12D10 D20⋊23D4 C42⋊17D10 C42.131D10 C42.132D10 C42.133D10 C42.136D10 C10.372+ 1+4 C10.402+ 1+4 C10.442+ 1+4 C10.482+ 1+4 C4⋊C4⋊26D10 C10.162- 1+4 D20⋊21D4 D20⋊22D4 C10.532+ 1+4 C10.202- 1+4 C10.222- 1+4 C10.562+ 1+4 C10.572+ 1+4 C10.262- 1+4 D5×C22.D4 C10.1202+ 1+4 C10.1212+ 1+4 C10.822- 1+4 C10.612+ 1+4 C10.662+ 1+4 C10.672+ 1+4 C10.692+ 1+4 C42.237D10 C42.150D10 C42.151D10 C42.152D10 C42.153D10 C42.156D10 C42.157D10 C42.158D10 C42⋊23D10 C42⋊24D10 C42.189D10 C42.161D10 C42.163D10 C42.164D10 C42⋊25D10 C42.171D10 D20⋊12D4 C42.178D10 C42.180D10 Dic3⋊C4⋊D5 D30.34D4 D30.D4 (C6×D5).D4 D10.16D12 D30.6D4 D30.29D4
D10.13D4 is a maximal quotient of
C10.52(C4×D4) (C2×C4).Dic10 C22.58(D4×D5) (C2×C4)⋊9D20 C10.54(C4×D4) (C2×Dic5)⋊3D4 C10.(C4⋊D4) D10.12SD16 D10.17SD16 C4.Q8⋊D5 C20.(C4○D4) D10.13D8 D10.8Q16 C2.D8⋊D5 C2.D8⋊7D5 C4⋊C4⋊5Dic5 (C2×C20).54D4 D10⋊5(C4⋊C4) C10.90(C4×D4) (C2×C4)⋊3D20 (C2×C20).289D4 (C2×C20).290D4 Dic3⋊C4⋊D5 D30.34D4 D30.D4 (C6×D5).D4 D10.16D12 D30.6D4 D30.29D4
34 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 5A | 5B | 10A | ··· | 10F | 20A | ··· | 20L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 10 | 10 | 20 | 2 | 2 | 4 | 4 | 10 | 10 | 20 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 |
34 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | D4 | D5 | C4○D4 | D10 | C4○D20 | D4×D5 | Q8⋊2D5 |
kernel | D10.13D4 | C10.D4 | D10⋊C4 | C5×C4⋊C4 | C2×C4×D5 | C2×D20 | D10 | C4⋊C4 | C10 | C2×C4 | C2 | C2 | C2 |
# reps | 1 | 1 | 3 | 1 | 1 | 1 | 2 | 2 | 4 | 6 | 8 | 2 | 2 |
Matrix representation of D10.13D4 ►in GL4(𝔽41) generated by
0 | 6 | 0 | 0 |
34 | 7 | 0 | 0 |
0 | 0 | 40 | 0 |
0 | 0 | 0 | 40 |
27 | 16 | 0 | 0 |
16 | 14 | 0 | 0 |
0 | 0 | 0 | 9 |
0 | 0 | 32 | 0 |
24 | 35 | 0 | 0 |
7 | 17 | 0 | 0 |
0 | 0 | 9 | 0 |
0 | 0 | 0 | 32 |
30 | 13 | 0 | 0 |
19 | 11 | 0 | 0 |
0 | 0 | 0 | 32 |
0 | 0 | 32 | 0 |
G:=sub<GL(4,GF(41))| [0,34,0,0,6,7,0,0,0,0,40,0,0,0,0,40],[27,16,0,0,16,14,0,0,0,0,0,32,0,0,9,0],[24,7,0,0,35,17,0,0,0,0,9,0,0,0,0,32],[30,19,0,0,13,11,0,0,0,0,0,32,0,0,32,0] >;
D10.13D4 in GAP, Magma, Sage, TeX
D_{10}._{13}D_4
% in TeX
G:=Group("D10.13D4");
// GroupNames label
G:=SmallGroup(160,115);
// by ID
G=gap.SmallGroup(160,115);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,55,218,188,86,4613]);
// Polycyclic
G:=Group<a,b,c,d|a^10=b^2=c^4=1,d^2=a^5,b*a*b=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d^-1=a^5*b,d*c*d^-1=c^-1>;
// generators/relations