# Extensions 1→N→G→Q→1 with N=C22 and Q=C3×D20

Direct product G=N×Q with N=C22 and Q=C3×D20
dρLabelID
C2×C6×D20240C2xC6xD20480,1137

Semidirect products G=N:Q with N=C22 and Q=C3×D20
extensionφ:Q→Aut NdρLabelID
C22⋊(C3×D20) = A4×D20φ: C3×D20/D20C3 ⊆ Aut C22606+C2^2:(C3xD20)480,1037
C222(C3×D20) = C3×C207D4φ: C3×D20/C60C2 ⊆ Aut C22240C2^2:2(C3xD20)480,723
C223(C3×D20) = C3×C22⋊D20φ: C3×D20/C6×D5C2 ⊆ Aut C22120C2^2:3(C3xD20)480,675

Non-split extensions G=N.Q with N=C22 and Q=C3×D20
extensionφ:Q→Aut NdρLabelID
C22.1(C3×D20) = C3×D407C2φ: C3×D20/C60C2 ⊆ Aut C222402C2^2.1(C3xD20)480,697
C22.2(C3×D20) = C3×C23.1D10φ: C3×D20/C6×D5C2 ⊆ Aut C221204C2^2.2(C3xD20)480,84
C22.3(C3×D20) = C3×D207C4φ: C3×D20/C6×D5C2 ⊆ Aut C221204C2^2.3(C3xD20)480,103
C22.4(C3×D20) = C3×C22.D20φ: C3×D20/C6×D5C2 ⊆ Aut C22240C2^2.4(C3xD20)480,679
C22.5(C3×D20) = C3×C8⋊D10φ: C3×D20/C6×D5C2 ⊆ Aut C221204C2^2.5(C3xD20)480,701
C22.6(C3×D20) = C3×C8.D10φ: C3×D20/C6×D5C2 ⊆ Aut C222404C2^2.6(C3xD20)480,702
C22.7(C3×D20) = C3×C20.44D4central extension (φ=1)480C2^2.7(C3xD20)480,94
C22.8(C3×D20) = C3×C406C4central extension (φ=1)480C2^2.8(C3xD20)480,95
C22.9(C3×D20) = C3×C405C4central extension (φ=1)480C2^2.9(C3xD20)480,96
C22.10(C3×D20) = C3×D205C4central extension (φ=1)240C2^2.10(C3xD20)480,99
C22.11(C3×D20) = C3×C10.10C42central extension (φ=1)480C2^2.11(C3xD20)480,109
C22.12(C3×D20) = C6×C40⋊C2central extension (φ=1)240C2^2.12(C3xD20)480,695
C22.13(C3×D20) = C6×D40central extension (φ=1)240C2^2.13(C3xD20)480,696
C22.14(C3×D20) = C6×Dic20central extension (φ=1)480C2^2.14(C3xD20)480,698
C22.15(C3×D20) = C6×C4⋊Dic5central extension (φ=1)480C2^2.15(C3xD20)480,718
C22.16(C3×D20) = C6×D10⋊C4central extension (φ=1)240C2^2.16(C3xD20)480,720

׿
×
𝔽