direct product, metabelian, soluble, monomial
Aliases: A4×D20, C4⋊(D5×A4), C5⋊1(D4×A4), C20⋊1(C2×A4), (C4×A4)⋊3D5, (C5×A4)⋊5D4, C22⋊(C3×D20), (C22×D20)⋊C3, (A4×C20)⋊3C2, D10⋊1(C2×A4), (C22×C20)⋊1C6, (C23×D5)⋊1C6, (C2×A4).15D10, C10.3(C22×A4), C23.12(C6×D5), (C10×A4).15C22, (C2×D5×A4)⋊4C2, C2.4(C2×D5×A4), (C22×C4)⋊(C3×D5), (C2×C10)⋊1(C3×D4), (C22×C10).3(C2×C6), SmallGroup(480,1037)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for A4×D20
G = < a,b,c,d,e | a2=b2=c3=d20=e2=1, cac-1=ab=ba, ad=da, ae=ea, cbc-1=a, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >
Subgroups: 1080 in 132 conjugacy classes, 27 normal (21 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C5, C6, C2×C4, D4, C23, C23, D5, C10, C10, C12, A4, C2×C6, C15, C22×C4, C2×D4, C24, C20, C20, D10, D10, C2×C10, C2×C10, C3×D4, C2×A4, C2×A4, C3×D5, C30, C22×D4, D20, D20, C2×C20, C22×D5, C22×C10, C4×A4, C22×A4, C60, C5×A4, C6×D5, C2×D20, C22×C20, C23×D5, D4×A4, C3×D20, D5×A4, C10×A4, C22×D20, A4×C20, C2×D5×A4, A4×D20
Quotients: C1, C2, C3, C22, C6, D4, D5, A4, C2×C6, D10, C3×D4, C2×A4, C3×D5, D20, C22×A4, C6×D5, D4×A4, C3×D20, D5×A4, C2×D5×A4, A4×D20
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)
(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)
(1 44 28)(2 45 29)(3 46 30)(4 47 31)(5 48 32)(6 49 33)(7 50 34)(8 51 35)(9 52 36)(10 53 37)(11 54 38)(12 55 39)(13 56 40)(14 57 21)(15 58 22)(16 59 23)(17 60 24)(18 41 25)(19 42 26)(20 43 27)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)
(1 20)(2 19)(3 18)(4 17)(5 16)(6 15)(7 14)(8 13)(9 12)(10 11)(21 34)(22 33)(23 32)(24 31)(25 30)(26 29)(27 28)(35 40)(36 39)(37 38)(41 46)(42 45)(43 44)(47 60)(48 59)(49 58)(50 57)(51 56)(52 55)(53 54)
G:=sub<Sym(60)| (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60), (21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60), (1,44,28)(2,45,29)(3,46,30)(4,47,31)(5,48,32)(6,49,33)(7,50,34)(8,51,35)(9,52,36)(10,53,37)(11,54,38)(12,55,39)(13,56,40)(14,57,21)(15,58,22)(16,59,23)(17,60,24)(18,41,25)(19,42,26)(20,43,27), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,34)(22,33)(23,32)(24,31)(25,30)(26,29)(27,28)(35,40)(36,39)(37,38)(41,46)(42,45)(43,44)(47,60)(48,59)(49,58)(50,57)(51,56)(52,55)(53,54)>;
G:=Group( (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60), (21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60), (1,44,28)(2,45,29)(3,46,30)(4,47,31)(5,48,32)(6,49,33)(7,50,34)(8,51,35)(9,52,36)(10,53,37)(11,54,38)(12,55,39)(13,56,40)(14,57,21)(15,58,22)(16,59,23)(17,60,24)(18,41,25)(19,42,26)(20,43,27), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,34)(22,33)(23,32)(24,31)(25,30)(26,29)(27,28)(35,40)(36,39)(37,38)(41,46)(42,45)(43,44)(47,60)(48,59)(49,58)(50,57)(51,56)(52,55)(53,54) );
G=PermutationGroup([[(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60)], [(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60)], [(1,44,28),(2,45,29),(3,46,30),(4,47,31),(5,48,32),(6,49,33),(7,50,34),(8,51,35),(9,52,36),(10,53,37),(11,54,38),(12,55,39),(13,56,40),(14,57,21),(15,58,22),(16,59,23),(17,60,24),(18,41,25),(19,42,26),(20,43,27)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)], [(1,20),(2,19),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,11),(21,34),(22,33),(23,32),(24,31),(25,30),(26,29),(27,28),(35,40),(36,39),(37,38),(41,46),(42,45),(43,44),(47,60),(48,59),(49,58),(50,57),(51,56),(52,55),(53,54)]])
52 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 4A | 4B | 5A | 5B | 6A | 6B | 6C | 6D | 6E | 6F | 10A | 10B | 10C | 10D | 10E | 10F | 12A | 12B | 15A | 15B | 15C | 15D | 20A | 20B | 20C | 20D | 20E | 20F | 20G | 20H | 30A | 30B | 30C | 30D | 60A | ··· | 60H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 10 | 12 | 12 | 15 | 15 | 15 | 15 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 30 | 30 | 30 | 30 | 60 | ··· | 60 |
size | 1 | 1 | 3 | 3 | 10 | 10 | 30 | 30 | 4 | 4 | 2 | 6 | 2 | 2 | 4 | 4 | 40 | 40 | 40 | 40 | 2 | 2 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 8 | 8 | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 8 | ··· | 8 |
52 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 6 | 6 | 6 | 6 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |||||||
image | C1 | C2 | C2 | C3 | C6 | C6 | D4 | D5 | D10 | C3×D4 | C3×D5 | D20 | C6×D5 | C3×D20 | A4 | C2×A4 | C2×A4 | D4×A4 | D5×A4 | C2×D5×A4 | A4×D20 |
kernel | A4×D20 | A4×C20 | C2×D5×A4 | C22×D20 | C22×C20 | C23×D5 | C5×A4 | C4×A4 | C2×A4 | C2×C10 | C22×C4 | A4 | C23 | C22 | D20 | C20 | D10 | C5 | C4 | C2 | C1 |
# reps | 1 | 1 | 2 | 2 | 2 | 4 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 8 | 1 | 1 | 2 | 1 | 2 | 2 | 4 |
Matrix representation of A4×D20 ►in GL5(𝔽61)
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 60 | 1 |
0 | 0 | 0 | 60 | 0 |
0 | 0 | 1 | 60 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 60 | 0 | 0 |
0 | 0 | 60 | 0 | 1 |
0 | 0 | 60 | 1 | 0 |
13 | 0 | 0 | 0 | 0 |
0 | 13 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 |
26 | 22 | 0 | 0 | 0 |
39 | 26 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
39 | 26 | 0 | 0 | 0 |
26 | 22 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
G:=sub<GL(5,GF(61))| [1,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,60,60,60,0,0,1,0,0],[1,0,0,0,0,0,1,0,0,0,0,0,60,60,60,0,0,0,0,1,0,0,0,1,0],[13,0,0,0,0,0,13,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0],[26,39,0,0,0,22,26,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[39,26,0,0,0,26,22,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1] >;
A4×D20 in GAP, Magma, Sage, TeX
A_4\times D_{20}
% in TeX
G:=Group("A4xD20");
// GroupNames label
G:=SmallGroup(480,1037);
// by ID
G=gap.SmallGroup(480,1037);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,-2,2,-5,197,92,648,271,18822]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^20=e^2=1,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations