Extensions 1→N→G→Q→1 with N=C4 and Q=C5×D12

Direct product G=N×Q with N=C4 and Q=C5×D12
dρLabelID
C20×D12240C20xD12480,752

Semidirect products G=N:Q with N=C4 and Q=C5×D12
extensionφ:Q→Aut NdρLabelID
C41(C5×D12) = C5×C4⋊D12φ: C5×D12/C60C2 ⊆ Aut C4240C4:1(C5xD12)480,753
C42(C5×D12) = C5×C12⋊D4φ: C5×D12/S3×C10C2 ⊆ Aut C4240C4:2(C5xD12)480,774

Non-split extensions G=N.Q with N=C4 and Q=C5×D12
extensionφ:Q→Aut NdρLabelID
C4.1(C5×D12) = C5×D48φ: C5×D12/C60C2 ⊆ Aut C42402C4.1(C5xD12)480,118
C4.2(C5×D12) = C5×C48⋊C2φ: C5×D12/C60C2 ⊆ Aut C42402C4.2(C5xD12)480,119
C4.3(C5×D12) = C5×Dic24φ: C5×D12/C60C2 ⊆ Aut C44802C4.3(C5xD12)480,120
C4.4(C5×D12) = C5×C122Q8φ: C5×D12/C60C2 ⊆ Aut C4480C4.4(C5xD12)480,748
C4.5(C5×D12) = C5×C427S3φ: C5×D12/C60C2 ⊆ Aut C4240C4.5(C5xD12)480,754
C4.6(C5×D12) = C10×C24⋊C2φ: C5×D12/C60C2 ⊆ Aut C4240C4.6(C5xD12)480,781
C4.7(C5×D12) = C10×D24φ: C5×D12/C60C2 ⊆ Aut C4240C4.7(C5xD12)480,782
C4.8(C5×D12) = C10×Dic12φ: C5×D12/C60C2 ⊆ Aut C4480C4.8(C5xD12)480,784
C4.9(C5×D12) = C5×C6.D8φ: C5×D12/S3×C10C2 ⊆ Aut C4240C4.9(C5xD12)480,128
C4.10(C5×D12) = C5×C6.SD16φ: C5×D12/S3×C10C2 ⊆ Aut C4480C4.10(C5xD12)480,129
C4.11(C5×D12) = C5×C12.46D4φ: C5×D12/S3×C10C2 ⊆ Aut C41204C4.11(C5xD12)480,142
C4.12(C5×D12) = C5×C12.47D4φ: C5×D12/S3×C10C2 ⊆ Aut C42404C4.12(C5xD12)480,143
C4.13(C5×D12) = C5×C4.D12φ: C5×D12/S3×C10C2 ⊆ Aut C4240C4.13(C5xD12)480,776
C4.14(C5×D12) = C5×C8⋊D6φ: C5×D12/S3×C10C2 ⊆ Aut C41204C4.14(C5xD12)480,787
C4.15(C5×D12) = C5×C8.D6φ: C5×D12/S3×C10C2 ⊆ Aut C42404C4.15(C5xD12)480,788
C4.16(C5×D12) = C5×C12⋊C8central extension (φ=1)480C4.16(C5xD12)480,123
C4.17(C5×D12) = C5×C424S3central extension (φ=1)1202C4.17(C5xD12)480,124
C4.18(C5×D12) = C5×C24.C4central extension (φ=1)2402C4.18(C5xD12)480,138
C4.19(C5×D12) = C5×D6⋊C8central extension (φ=1)240C4.19(C5xD12)480,139
C4.20(C5×D12) = C5×C4○D24central extension (φ=1)2402C4.20(C5xD12)480,783

׿
×
𝔽