direct product, metacyclic, supersoluble, monomial, 2-hyperelementary
Aliases: C5×D12, C15⋊6D4, C60⋊4C2, C20⋊3S3, C12⋊1C10, D6⋊1C10, C10.15D6, C30.20C22, C4⋊(C5×S3), C3⋊1(C5×D4), (S3×C10)⋊4C2, C2.4(S3×C10), C6.3(C2×C10), SmallGroup(120,23)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C5×D12
G = < a,b,c | a5=b12=c2=1, ab=ba, ac=ca, cbc=b-1 >
(1 39 54 23 35)(2 40 55 24 36)(3 41 56 13 25)(4 42 57 14 26)(5 43 58 15 27)(6 44 59 16 28)(7 45 60 17 29)(8 46 49 18 30)(9 47 50 19 31)(10 48 51 20 32)(11 37 52 21 33)(12 38 53 22 34)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)
(1 12)(2 11)(3 10)(4 9)(5 8)(6 7)(13 20)(14 19)(15 18)(16 17)(21 24)(22 23)(25 32)(26 31)(27 30)(28 29)(33 36)(34 35)(37 40)(38 39)(41 48)(42 47)(43 46)(44 45)(49 58)(50 57)(51 56)(52 55)(53 54)(59 60)
G:=sub<Sym(60)| (1,39,54,23,35)(2,40,55,24,36)(3,41,56,13,25)(4,42,57,14,26)(5,43,58,15,27)(6,44,59,16,28)(7,45,60,17,29)(8,46,49,18,30)(9,47,50,19,31)(10,48,51,20,32)(11,37,52,21,33)(12,38,53,22,34), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,20)(14,19)(15,18)(16,17)(21,24)(22,23)(25,32)(26,31)(27,30)(28,29)(33,36)(34,35)(37,40)(38,39)(41,48)(42,47)(43,46)(44,45)(49,58)(50,57)(51,56)(52,55)(53,54)(59,60)>;
G:=Group( (1,39,54,23,35)(2,40,55,24,36)(3,41,56,13,25)(4,42,57,14,26)(5,43,58,15,27)(6,44,59,16,28)(7,45,60,17,29)(8,46,49,18,30)(9,47,50,19,31)(10,48,51,20,32)(11,37,52,21,33)(12,38,53,22,34), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,20)(14,19)(15,18)(16,17)(21,24)(22,23)(25,32)(26,31)(27,30)(28,29)(33,36)(34,35)(37,40)(38,39)(41,48)(42,47)(43,46)(44,45)(49,58)(50,57)(51,56)(52,55)(53,54)(59,60) );
G=PermutationGroup([[(1,39,54,23,35),(2,40,55,24,36),(3,41,56,13,25),(4,42,57,14,26),(5,43,58,15,27),(6,44,59,16,28),(7,45,60,17,29),(8,46,49,18,30),(9,47,50,19,31),(10,48,51,20,32),(11,37,52,21,33),(12,38,53,22,34)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60)], [(1,12),(2,11),(3,10),(4,9),(5,8),(6,7),(13,20),(14,19),(15,18),(16,17),(21,24),(22,23),(25,32),(26,31),(27,30),(28,29),(33,36),(34,35),(37,40),(38,39),(41,48),(42,47),(43,46),(44,45),(49,58),(50,57),(51,56),(52,55),(53,54),(59,60)]])
C5×D12 is a maximal subgroup of
C15⋊D8 C5⋊D24 C20.D6 D12.D5 D12⋊D5 D12⋊5D5 C20⋊D6 C5×S3×D4
45 conjugacy classes
class | 1 | 2A | 2B | 2C | 3 | 4 | 5A | 5B | 5C | 5D | 6 | 10A | 10B | 10C | 10D | 10E | ··· | 10L | 12A | 12B | 15A | 15B | 15C | 15D | 20A | 20B | 20C | 20D | 30A | 30B | 30C | 30D | 60A | ··· | 60H |
order | 1 | 2 | 2 | 2 | 3 | 4 | 5 | 5 | 5 | 5 | 6 | 10 | 10 | 10 | 10 | 10 | ··· | 10 | 12 | 12 | 15 | 15 | 15 | 15 | 20 | 20 | 20 | 20 | 30 | 30 | 30 | 30 | 60 | ··· | 60 |
size | 1 | 1 | 6 | 6 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 6 | ··· | 6 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 |
45 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | |||||||
image | C1 | C2 | C2 | C5 | C10 | C10 | S3 | D4 | D6 | D12 | C5×S3 | C5×D4 | S3×C10 | C5×D12 |
kernel | C5×D12 | C60 | S3×C10 | D12 | C12 | D6 | C20 | C15 | C10 | C5 | C4 | C3 | C2 | C1 |
# reps | 1 | 1 | 2 | 4 | 4 | 8 | 1 | 1 | 1 | 2 | 4 | 4 | 4 | 8 |
Matrix representation of C5×D12 ►in GL2(𝔽11) generated by
4 | 0 |
0 | 4 |
6 | 2 |
5 | 0 |
0 | 2 |
6 | 0 |
G:=sub<GL(2,GF(11))| [4,0,0,4],[6,5,2,0],[0,6,2,0] >;
C5×D12 in GAP, Magma, Sage, TeX
C_5\times D_{12}
% in TeX
G:=Group("C5xD12");
// GroupNames label
G:=SmallGroup(120,23);
// by ID
G=gap.SmallGroup(120,23);
# by ID
G:=PCGroup([5,-2,-2,-5,-2,-3,221,106,2004]);
// Polycyclic
G:=Group<a,b,c|a^5=b^12=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations
Export