# Extensions 1→N→G→Q→1 with N=C3×M4(2) and Q=D5

Direct product G=N×Q with N=C3×M4(2) and Q=D5
dρLabelID
C3×D5×M4(2)1204C3xD5xM4(2)480,699

Semidirect products G=N:Q with N=C3×M4(2) and Q=D5
extensionφ:Q→Out NdρLabelID
(C3×M4(2))⋊1D5 = C8⋊D30φ: D5/C5C2 ⊆ Out C3×M4(2)1204+(C3xM4(2)):1D5480,873
(C3×M4(2))⋊2D5 = C8.D30φ: D5/C5C2 ⊆ Out C3×M4(2)2404-(C3xM4(2)):2D5480,874
(C3×M4(2))⋊3D5 = C3×C8⋊D10φ: D5/C5C2 ⊆ Out C3×M4(2)1204(C3xM4(2)):3D5480,701
(C3×M4(2))⋊4D5 = C3×C8.D10φ: D5/C5C2 ⊆ Out C3×M4(2)2404(C3xM4(2)):4D5480,702
(C3×M4(2))⋊5D5 = M4(2)×D15φ: D5/C5C2 ⊆ Out C3×M4(2)1204(C3xM4(2)):5D5480,871
(C3×M4(2))⋊6D5 = D60.3C4φ: D5/C5C2 ⊆ Out C3×M4(2)2404(C3xM4(2)):6D5480,872
(C3×M4(2))⋊7D5 = C3×C20.46D4φ: D5/C5C2 ⊆ Out C3×M4(2)1204(C3xM4(2)):7D5480,101
(C3×M4(2))⋊8D5 = C3×D207C4φ: D5/C5C2 ⊆ Out C3×M4(2)1204(C3xM4(2)):8D5480,103
(C3×M4(2))⋊9D5 = M4(2)⋊D15φ: D5/C5C2 ⊆ Out C3×M4(2)1204+(C3xM4(2)):9D5480,183
(C3×M4(2))⋊10D5 = D6010C4φ: D5/C5C2 ⊆ Out C3×M4(2)1204(C3xM4(2)):10D5480,185
(C3×M4(2))⋊11D5 = C3×D20.2C4φ: trivial image2404(C3xM4(2)):11D5480,700

Non-split extensions G=N.Q with N=C3×M4(2) and Q=D5
extensionφ:Q→Out NdρLabelID
(C3×M4(2)).1D5 = C3×C20.53D4φ: D5/C5C2 ⊆ Out C3×M4(2)2404(C3xM4(2)).1D5480,100
(C3×M4(2)).2D5 = C3×C4.12D20φ: D5/C5C2 ⊆ Out C3×M4(2)2404(C3xM4(2)).2D5480,102
(C3×M4(2)).3D5 = C60.210D4φ: D5/C5C2 ⊆ Out C3×M4(2)2404(C3xM4(2)).3D5480,182
(C3×M4(2)).4D5 = C4.D60φ: D5/C5C2 ⊆ Out C3×M4(2)2404-(C3xM4(2)).4D5480,184

׿
×
𝔽