Extensions 1→N→G→Q→1 with N=C3×Q16 and Q=D5

Direct product G=N×Q with N=C3×Q16 and Q=D5
dρLabelID
C3×D5×Q162404C3xD5xQ16480,710

Semidirect products G=N:Q with N=C3×Q16 and Q=D5
extensionφ:Q→Out NdρLabelID
(C3×Q16)⋊1D5 = C8.6D30φ: D5/C5C2 ⊆ Out C3×Q162404+(C3xQ16):1D5480,188
(C3×Q16)⋊2D5 = Q16×D15φ: D5/C5C2 ⊆ Out C3×Q162404-(C3xQ16):2D5480,882
(C3×Q16)⋊3D5 = D1208C2φ: D5/C5C2 ⊆ Out C3×Q162404+(C3xQ16):3D5480,884
(C3×Q16)⋊4D5 = Q16⋊D15φ: D5/C5C2 ⊆ Out C3×Q162404(C3xQ16):4D5480,883
(C3×Q16)⋊5D5 = C3×C5⋊SD32φ: D5/C5C2 ⊆ Out C3×Q162404(C3xQ16):5D5480,106
(C3×Q16)⋊6D5 = C3×Q16⋊D5φ: D5/C5C2 ⊆ Out C3×Q162404(C3xQ16):6D5480,711
(C3×Q16)⋊7D5 = C3×Q8.D10φ: trivial image2404(C3xQ16):7D5480,712

Non-split extensions G=N.Q with N=C3×Q16 and Q=D5
extensionφ:Q→Out NdρLabelID
(C3×Q16).1D5 = C157Q32φ: D5/C5C2 ⊆ Out C3×Q164804-(C3xQ16).1D5480,189
(C3×Q16).2D5 = C3×C5⋊Q32φ: D5/C5C2 ⊆ Out C3×Q164804(C3xQ16).2D5480,107

׿
×
𝔽