Extensions 1→N→G→Q→1 with N=C2×C4 and Q=C5×Dic3

Direct product G=N×Q with N=C2×C4 and Q=C5×Dic3
dρLabelID
Dic3×C2×C20480Dic3xC2xC20480,801

Semidirect products G=N:Q with N=C2×C4 and Q=C5×Dic3
extensionφ:Q→Aut NdρLabelID
(C2×C4)⋊(C5×Dic3) = C5×C23.7D6φ: C5×Dic3/C15C4 ⊆ Aut C2×C41204(C2xC4):(C5xDic3)480,153
(C2×C4)⋊2(C5×Dic3) = C5×C6.C42φ: C5×Dic3/C30C2 ⊆ Aut C2×C4480(C2xC4):2(C5xDic3)480,150
(C2×C4)⋊3(C5×Dic3) = C10×C4⋊Dic3φ: C5×Dic3/C30C2 ⊆ Aut C2×C4480(C2xC4):3(C5xDic3)480,804
(C2×C4)⋊4(C5×Dic3) = C5×C23.26D6φ: C5×Dic3/C30C2 ⊆ Aut C2×C4240(C2xC4):4(C5xDic3)480,805

Non-split extensions G=N.Q with N=C2×C4 and Q=C5×Dic3
extensionφ:Q→Aut NdρLabelID
(C2×C4).(C5×Dic3) = C5×C12.10D4φ: C5×Dic3/C15C4 ⊆ Aut C2×C42404(C2xC4).(C5xDic3)480,155
(C2×C4).2(C5×Dic3) = C5×C42.S3φ: C5×Dic3/C30C2 ⊆ Aut C2×C4480(C2xC4).2(C5xDic3)480,122
(C2×C4).3(C5×Dic3) = C5×C12.55D4φ: C5×Dic3/C30C2 ⊆ Aut C2×C4240(C2xC4).3(C5xDic3)480,149
(C2×C4).4(C5×Dic3) = C5×C12⋊C8φ: C5×Dic3/C30C2 ⊆ Aut C2×C4480(C2xC4).4(C5xDic3)480,123
(C2×C4).5(C5×Dic3) = C5×C12.C8φ: C5×Dic3/C30C2 ⊆ Aut C2×C42402(C2xC4).5(C5xDic3)480,131
(C2×C4).6(C5×Dic3) = C10×C4.Dic3φ: C5×Dic3/C30C2 ⊆ Aut C2×C4240(C2xC4).6(C5xDic3)480,800
(C2×C4).7(C5×Dic3) = C20×C3⋊C8central extension (φ=1)480(C2xC4).7(C5xDic3)480,121
(C2×C4).8(C5×Dic3) = C10×C3⋊C16central extension (φ=1)480(C2xC4).8(C5xDic3)480,130
(C2×C4).9(C5×Dic3) = C2×C10×C3⋊C8central extension (φ=1)480(C2xC4).9(C5xDic3)480,799

׿
×
𝔽