Extensions 1→N→G→Q→1 with N=C4 and Q=C2×Dic15

Direct product G=N×Q with N=C4 and Q=C2×Dic15
dρLabelID
C2×C4×Dic15480C2xC4xDic15480,887

Semidirect products G=N:Q with N=C4 and Q=C2×Dic15
extensionφ:Q→Aut NdρLabelID
C41(C2×Dic15) = D4×Dic15φ: C2×Dic15/Dic15C2 ⊆ Aut C4240C4:1(C2xDic15)480,899
C42(C2×Dic15) = C2×C605C4φ: C2×Dic15/C2×C30C2 ⊆ Aut C4480C4:2(C2xDic15)480,890

Non-split extensions G=N.Q with N=C4 and Q=C2×Dic15
extensionφ:Q→Aut NdρLabelID
C4.1(C2×Dic15) = D4⋊Dic15φ: C2×Dic15/Dic15C2 ⊆ Aut C4240C4.1(C2xDic15)480,192
C4.2(C2×Dic15) = Q82Dic15φ: C2×Dic15/Dic15C2 ⊆ Aut C4480C4.2(C2xDic15)480,195
C4.3(C2×Dic15) = Q83Dic15φ: C2×Dic15/Dic15C2 ⊆ Aut C41204C4.3(C2xDic15)480,197
C4.4(C2×Dic15) = Q8×Dic15φ: C2×Dic15/Dic15C2 ⊆ Aut C4480C4.4(C2xDic15)480,910
C4.5(C2×Dic15) = D4.Dic15φ: C2×Dic15/Dic15C2 ⊆ Aut C42404C4.5(C2xDic15)480,913
C4.6(C2×Dic15) = C12010C4φ: C2×Dic15/C2×C30C2 ⊆ Aut C4480C4.6(C2xDic15)480,177
C4.7(C2×Dic15) = C1209C4φ: C2×Dic15/C2×C30C2 ⊆ Aut C4480C4.7(C2xDic15)480,178
C4.8(C2×Dic15) = C4.18D60φ: C2×Dic15/C2×C30C2 ⊆ Aut C42402C4.8(C2xDic15)480,179
C4.9(C2×Dic15) = C2×C153C16central extension (φ=1)480C4.9(C2xDic15)480,171
C4.10(C2×Dic15) = C60.7C8central extension (φ=1)2402C4.10(C2xDic15)480,172
C4.11(C2×Dic15) = C8×Dic15central extension (φ=1)480C4.11(C2xDic15)480,173
C4.12(C2×Dic15) = C12013C4central extension (φ=1)480C4.12(C2xDic15)480,175
C4.13(C2×Dic15) = C22×C153C8central extension (φ=1)480C4.13(C2xDic15)480,885
C4.14(C2×Dic15) = C2×C60.7C4central extension (φ=1)240C4.14(C2xDic15)480,886
C4.15(C2×Dic15) = C23.26D30central extension (φ=1)240C4.15(C2xDic15)480,891

׿
×
𝔽