Copied to
clipboard

G = Q83Dic15order 480 = 25·3·5

2nd semidirect product of Q8 and Dic15 acting via Dic15/C30=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Q83Dic15, D42Dic15, C60.213D4, C1521C4≀C2, (D4×C15)⋊8C4, (Q8×C15)⋊8C4, (C2×C30).3D4, C60.83(C2×C4), (C3×Q8)⋊2Dic5, (C5×Q8)⋊8Dic3, (C3×D4)⋊2Dic5, C4○D4.3D15, (C5×D4)⋊5Dic3, (C2×C20).76D6, (C2×C4).40D30, (C4×Dic15)⋊2C2, (C2×C12).77D10, C60.7C416C2, C12.9(C2×Dic5), C4.3(C2×Dic15), C55(Q83Dic3), C33(D42Dic5), C4.31(C157D4), (C2×C60).62C22, C20.30(C2×Dic3), C12.110(C5⋊D4), C20.110(C3⋊D4), C22.3(C157D4), C6.19(C23.D5), C30.107(C22⋊C4), C2.8(C30.38D4), C10.30(C6.D4), (C5×C4○D4).5S3, (C3×C4○D4).1D5, (C15×C4○D4).1C2, (C2×C6).8(C5⋊D4), (C2×C10).7(C3⋊D4), SmallGroup(480,197)

Series: Derived Chief Lower central Upper central

C1C60 — Q83Dic15
C1C5C15C30C60C2×C60C60.7C4 — Q83Dic15
C15C30C60 — Q83Dic15
C1C4C2×C4C4○D4

Generators and relations for Q83Dic15
 G = < a,b,c,d | a4=c30=1, b2=a2, d2=c15, bab-1=a-1, ac=ca, ad=da, cbc-1=a2b, dbd-1=a-1b, dcd-1=c-1 >

Subgroups: 356 in 88 conjugacy classes, 39 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C5, C6, C6, C8, C2×C4, C2×C4, D4, D4, Q8, C10, C10, Dic3, C12, C12, C2×C6, C2×C6, C15, C42, M4(2), C4○D4, Dic5, C20, C20, C2×C10, C2×C10, C3⋊C8, C2×Dic3, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C30, C30, C4≀C2, C52C8, C2×Dic5, C2×C20, C2×C20, C5×D4, C5×D4, C5×Q8, C4.Dic3, C4×Dic3, C3×C4○D4, Dic15, C60, C60, C2×C30, C2×C30, C4.Dic5, C4×Dic5, C5×C4○D4, Q83Dic3, C153C8, C2×Dic15, C2×C60, C2×C60, D4×C15, D4×C15, Q8×C15, D42Dic5, C60.7C4, C4×Dic15, C15×C4○D4, Q83Dic15
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, D5, Dic3, D6, C22⋊C4, Dic5, D10, C2×Dic3, C3⋊D4, D15, C4≀C2, C2×Dic5, C5⋊D4, C6.D4, Dic15, D30, C23.D5, Q83Dic3, C2×Dic15, C157D4, D42Dic5, C30.38D4, Q83Dic15

Smallest permutation representation of Q83Dic15
On 120 points
Generators in S120
(1 47 16 31)(2 48 17 32)(3 49 18 33)(4 50 19 34)(5 51 20 35)(6 52 21 36)(7 53 22 37)(8 54 23 38)(9 55 24 39)(10 56 25 40)(11 57 26 41)(12 58 27 42)(13 59 28 43)(14 60 29 44)(15 46 30 45)(61 99 76 114)(62 100 77 115)(63 101 78 116)(64 102 79 117)(65 103 80 118)(66 104 81 119)(67 105 82 120)(68 106 83 91)(69 107 84 92)(70 108 85 93)(71 109 86 94)(72 110 87 95)(73 111 88 96)(74 112 89 97)(75 113 90 98)
(1 114 16 99)(2 100 17 115)(3 116 18 101)(4 102 19 117)(5 118 20 103)(6 104 21 119)(7 120 22 105)(8 106 23 91)(9 92 24 107)(10 108 25 93)(11 94 26 109)(12 110 27 95)(13 96 28 111)(14 112 29 97)(15 98 30 113)(31 61 47 76)(32 77 48 62)(33 63 49 78)(34 79 50 64)(35 65 51 80)(36 81 52 66)(37 67 53 82)(38 83 54 68)(39 69 55 84)(40 85 56 70)(41 71 57 86)(42 87 58 72)(43 73 59 88)(44 89 60 74)(45 75 46 90)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 29)(2 28)(3 27)(4 26)(5 25)(6 24)(7 23)(8 22)(9 21)(10 20)(11 19)(12 18)(13 17)(14 16)(15 30)(31 60)(32 59)(33 58)(34 57)(35 56)(36 55)(37 54)(38 53)(39 52)(40 51)(41 50)(42 49)(43 48)(44 47)(45 46)(61 97 76 112)(62 96 77 111)(63 95 78 110)(64 94 79 109)(65 93 80 108)(66 92 81 107)(67 91 82 106)(68 120 83 105)(69 119 84 104)(70 118 85 103)(71 117 86 102)(72 116 87 101)(73 115 88 100)(74 114 89 99)(75 113 90 98)

G:=sub<Sym(120)| (1,47,16,31)(2,48,17,32)(3,49,18,33)(4,50,19,34)(5,51,20,35)(6,52,21,36)(7,53,22,37)(8,54,23,38)(9,55,24,39)(10,56,25,40)(11,57,26,41)(12,58,27,42)(13,59,28,43)(14,60,29,44)(15,46,30,45)(61,99,76,114)(62,100,77,115)(63,101,78,116)(64,102,79,117)(65,103,80,118)(66,104,81,119)(67,105,82,120)(68,106,83,91)(69,107,84,92)(70,108,85,93)(71,109,86,94)(72,110,87,95)(73,111,88,96)(74,112,89,97)(75,113,90,98), (1,114,16,99)(2,100,17,115)(3,116,18,101)(4,102,19,117)(5,118,20,103)(6,104,21,119)(7,120,22,105)(8,106,23,91)(9,92,24,107)(10,108,25,93)(11,94,26,109)(12,110,27,95)(13,96,28,111)(14,112,29,97)(15,98,30,113)(31,61,47,76)(32,77,48,62)(33,63,49,78)(34,79,50,64)(35,65,51,80)(36,81,52,66)(37,67,53,82)(38,83,54,68)(39,69,55,84)(40,85,56,70)(41,71,57,86)(42,87,58,72)(43,73,59,88)(44,89,60,74)(45,75,46,90), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,29)(2,28)(3,27)(4,26)(5,25)(6,24)(7,23)(8,22)(9,21)(10,20)(11,19)(12,18)(13,17)(14,16)(15,30)(31,60)(32,59)(33,58)(34,57)(35,56)(36,55)(37,54)(38,53)(39,52)(40,51)(41,50)(42,49)(43,48)(44,47)(45,46)(61,97,76,112)(62,96,77,111)(63,95,78,110)(64,94,79,109)(65,93,80,108)(66,92,81,107)(67,91,82,106)(68,120,83,105)(69,119,84,104)(70,118,85,103)(71,117,86,102)(72,116,87,101)(73,115,88,100)(74,114,89,99)(75,113,90,98)>;

G:=Group( (1,47,16,31)(2,48,17,32)(3,49,18,33)(4,50,19,34)(5,51,20,35)(6,52,21,36)(7,53,22,37)(8,54,23,38)(9,55,24,39)(10,56,25,40)(11,57,26,41)(12,58,27,42)(13,59,28,43)(14,60,29,44)(15,46,30,45)(61,99,76,114)(62,100,77,115)(63,101,78,116)(64,102,79,117)(65,103,80,118)(66,104,81,119)(67,105,82,120)(68,106,83,91)(69,107,84,92)(70,108,85,93)(71,109,86,94)(72,110,87,95)(73,111,88,96)(74,112,89,97)(75,113,90,98), (1,114,16,99)(2,100,17,115)(3,116,18,101)(4,102,19,117)(5,118,20,103)(6,104,21,119)(7,120,22,105)(8,106,23,91)(9,92,24,107)(10,108,25,93)(11,94,26,109)(12,110,27,95)(13,96,28,111)(14,112,29,97)(15,98,30,113)(31,61,47,76)(32,77,48,62)(33,63,49,78)(34,79,50,64)(35,65,51,80)(36,81,52,66)(37,67,53,82)(38,83,54,68)(39,69,55,84)(40,85,56,70)(41,71,57,86)(42,87,58,72)(43,73,59,88)(44,89,60,74)(45,75,46,90), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,29)(2,28)(3,27)(4,26)(5,25)(6,24)(7,23)(8,22)(9,21)(10,20)(11,19)(12,18)(13,17)(14,16)(15,30)(31,60)(32,59)(33,58)(34,57)(35,56)(36,55)(37,54)(38,53)(39,52)(40,51)(41,50)(42,49)(43,48)(44,47)(45,46)(61,97,76,112)(62,96,77,111)(63,95,78,110)(64,94,79,109)(65,93,80,108)(66,92,81,107)(67,91,82,106)(68,120,83,105)(69,119,84,104)(70,118,85,103)(71,117,86,102)(72,116,87,101)(73,115,88,100)(74,114,89,99)(75,113,90,98) );

G=PermutationGroup([[(1,47,16,31),(2,48,17,32),(3,49,18,33),(4,50,19,34),(5,51,20,35),(6,52,21,36),(7,53,22,37),(8,54,23,38),(9,55,24,39),(10,56,25,40),(11,57,26,41),(12,58,27,42),(13,59,28,43),(14,60,29,44),(15,46,30,45),(61,99,76,114),(62,100,77,115),(63,101,78,116),(64,102,79,117),(65,103,80,118),(66,104,81,119),(67,105,82,120),(68,106,83,91),(69,107,84,92),(70,108,85,93),(71,109,86,94),(72,110,87,95),(73,111,88,96),(74,112,89,97),(75,113,90,98)], [(1,114,16,99),(2,100,17,115),(3,116,18,101),(4,102,19,117),(5,118,20,103),(6,104,21,119),(7,120,22,105),(8,106,23,91),(9,92,24,107),(10,108,25,93),(11,94,26,109),(12,110,27,95),(13,96,28,111),(14,112,29,97),(15,98,30,113),(31,61,47,76),(32,77,48,62),(33,63,49,78),(34,79,50,64),(35,65,51,80),(36,81,52,66),(37,67,53,82),(38,83,54,68),(39,69,55,84),(40,85,56,70),(41,71,57,86),(42,87,58,72),(43,73,59,88),(44,89,60,74),(45,75,46,90)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,29),(2,28),(3,27),(4,26),(5,25),(6,24),(7,23),(8,22),(9,21),(10,20),(11,19),(12,18),(13,17),(14,16),(15,30),(31,60),(32,59),(33,58),(34,57),(35,56),(36,55),(37,54),(38,53),(39,52),(40,51),(41,50),(42,49),(43,48),(44,47),(45,46),(61,97,76,112),(62,96,77,111),(63,95,78,110),(64,94,79,109),(65,93,80,108),(66,92,81,107),(67,91,82,106),(68,120,83,105),(69,119,84,104),(70,118,85,103),(71,117,86,102),(72,116,87,101),(73,115,88,100),(74,114,89,99),(75,113,90,98)]])

84 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D4E4F4G4H5A5B6A6B6C6D8A8B10A10B10C···10H12A12B12C12D12E15A15B15C15D20A20B20C20D20E···20J30A30B30C30D30E···30P60A···60H60I···60T
order122234444444455666688101010···101212121212151515152020202020···203030303030···3060···6060···60
size112421124303030302224446060224···422444222222224···422224···42···24···4

84 irreducible representations

dim111111222222222222222222222444
type+++++++++--+--++--
imageC1C2C2C2C4C4S3D4D4D5D6Dic3Dic3D10Dic5Dic5C3⋊D4C3⋊D4D15C4≀C2C5⋊D4C5⋊D4D30Dic15Dic15C157D4C157D4Q83Dic3D42Dic5Q83Dic15
kernelQ83Dic15C60.7C4C4×Dic15C15×C4○D4D4×C15Q8×C15C5×C4○D4C60C2×C30C3×C4○D4C2×C20C5×D4C5×Q8C2×C12C3×D4C3×Q8C20C2×C10C4○D4C15C12C2×C6C2×C4D4Q8C4C22C5C3C1
# reps111122111211122222444444488248

Matrix representation of Q83Dic15 in GL4(𝔽241) generated by

240000
024000
00640
000177
,
1654900
1927600
000177
001770
,
11014700
948400
0010
000240
,
5119000
24019000
002400
000177
G:=sub<GL(4,GF(241))| [240,0,0,0,0,240,0,0,0,0,64,0,0,0,0,177],[165,192,0,0,49,76,0,0,0,0,0,177,0,0,177,0],[110,94,0,0,147,84,0,0,0,0,1,0,0,0,0,240],[51,240,0,0,190,190,0,0,0,0,240,0,0,0,0,177] >;

Q83Dic15 in GAP, Magma, Sage, TeX

Q_8\rtimes_3{\rm Dic}_{15}
% in TeX

G:=Group("Q8:3Dic15");
// GroupNames label

G:=SmallGroup(480,197);
// by ID

G=gap.SmallGroup(480,197);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,28,141,100,675,346,80,2693,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^30=1,b^2=a^2,d^2=c^15,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=a^2*b,d*b*d^-1=a^-1*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽