Extensions 1→N→G→Q→1 with N=C5 and Q=C2×Dic3⋊C4

Direct product G=N×Q with N=C5 and Q=C2×Dic3⋊C4
dρLabelID
C10×Dic3⋊C4480C10xDic3:C4480,802

Semidirect products G=N:Q with N=C5 and Q=C2×Dic3⋊C4
extensionφ:Q→Aut NdρLabelID
C5⋊(C2×Dic3⋊C4) = C2×Dic3⋊F5φ: C2×Dic3⋊C4/C2×Dic3C4 ⊆ Aut C5120C5:(C2xDic3:C4)480,1001
C52(C2×Dic3⋊C4) = D5×Dic3⋊C4φ: C2×Dic3⋊C4/Dic3⋊C4C2 ⊆ Aut C5240C5:2(C2xDic3:C4)480,468
C53(C2×Dic3⋊C4) = C2×Dic155C4φ: C2×Dic3⋊C4/C22×Dic3C2 ⊆ Aut C5480C5:3(C2xDic3:C4)480,620
C54(C2×Dic3⋊C4) = C2×C6.Dic10φ: C2×Dic3⋊C4/C22×Dic3C2 ⊆ Aut C5480C5:4(C2xDic3:C4)480,621
C55(C2×Dic3⋊C4) = C2×C30.4Q8φ: C2×Dic3⋊C4/C22×C12C2 ⊆ Aut C5480C5:5(C2xDic3:C4)480,888


׿
×
𝔽