Copied to
clipboard

G = Dic3⋊C4order 48 = 24·3

The semidirect product of Dic3 and C4 acting via C4/C2=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic3⋊C4, C6.5D4, C6.1Q8, C2.1Dic6, C22.4D6, C31(C4⋊C4), C2.4(C4×S3), C6.3(C2×C4), (C2×C4).1S3, (C2×C12).1C2, C2.1(C3⋊D4), (C2×C6).4C22, (C2×Dic3).1C2, SmallGroup(48,12)

Series: Derived Chief Lower central Upper central

C1C6 — Dic3⋊C4
C1C3C6C2×C6C2×Dic3 — Dic3⋊C4
C3C6 — Dic3⋊C4
C1C22C2×C4

Generators and relations for Dic3⋊C4
 G = < a,b,c | a6=c4=1, b2=a3, bab-1=a-1, ac=ca, cbc-1=a3b >

2C4
3C4
3C4
6C4
3C2×C4
3C2×C4
2C12
2Dic3
3C4⋊C4

Character table of Dic3⋊C4

 class 12A2B2C34A4B4C4D4E4F6A6B6C12A12B12C12D
 size 111122266662222222
ρ1111111111111111111    trivial
ρ211111-1-11-11-1111-1-1-1-1    linear of order 2
ρ31111111-1-1-1-11111111    linear of order 2
ρ411111-1-1-11-11111-1-1-1-1    linear of order 2
ρ51-11-11i-i-i-1i11-1-1-i-iii    linear of order 4
ρ61-11-11i-ii1-i-11-1-1-i-iii    linear of order 4
ρ71-11-11-ii-i1i-11-1-1ii-i-i    linear of order 4
ρ81-11-11-iii-1-i11-1-1ii-i-i    linear of order 4
ρ92222-1220000-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ1022-2-22000000-2-220000    orthogonal lifted from D4
ρ112222-1-2-20000-1-1-11111    orthogonal lifted from D6
ρ122-2-222000000-22-20000    symplectic lifted from Q8, Schur index 2
ρ132-2-22-10000001-113-3-33    symplectic lifted from Dic6, Schur index 2
ρ142-2-22-10000001-11-333-3    symplectic lifted from Dic6, Schur index 2
ρ152-22-2-12i-2i0000-111ii-i-i    complex lifted from C4×S3
ρ162-22-2-1-2i2i0000-111-i-iii    complex lifted from C4×S3
ρ1722-2-2-100000011-1-3--3-3--3    complex lifted from C3⋊D4
ρ1822-2-2-100000011-1--3-3--3-3    complex lifted from C3⋊D4

Smallest permutation representation of Dic3⋊C4
Regular action on 48 points
Generators in S48
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 34 4 31)(2 33 5 36)(3 32 6 35)(7 26 10 29)(8 25 11 28)(9 30 12 27)(13 44 16 47)(14 43 17 46)(15 48 18 45)(19 38 22 41)(20 37 23 40)(21 42 24 39)
(1 23 11 17)(2 24 12 18)(3 19 7 13)(4 20 8 14)(5 21 9 15)(6 22 10 16)(25 46 31 40)(26 47 32 41)(27 48 33 42)(28 43 34 37)(29 44 35 38)(30 45 36 39)

G:=sub<Sym(48)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,34,4,31)(2,33,5,36)(3,32,6,35)(7,26,10,29)(8,25,11,28)(9,30,12,27)(13,44,16,47)(14,43,17,46)(15,48,18,45)(19,38,22,41)(20,37,23,40)(21,42,24,39), (1,23,11,17)(2,24,12,18)(3,19,7,13)(4,20,8,14)(5,21,9,15)(6,22,10,16)(25,46,31,40)(26,47,32,41)(27,48,33,42)(28,43,34,37)(29,44,35,38)(30,45,36,39)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,34,4,31)(2,33,5,36)(3,32,6,35)(7,26,10,29)(8,25,11,28)(9,30,12,27)(13,44,16,47)(14,43,17,46)(15,48,18,45)(19,38,22,41)(20,37,23,40)(21,42,24,39), (1,23,11,17)(2,24,12,18)(3,19,7,13)(4,20,8,14)(5,21,9,15)(6,22,10,16)(25,46,31,40)(26,47,32,41)(27,48,33,42)(28,43,34,37)(29,44,35,38)(30,45,36,39) );

G=PermutationGroup([(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,34,4,31),(2,33,5,36),(3,32,6,35),(7,26,10,29),(8,25,11,28),(9,30,12,27),(13,44,16,47),(14,43,17,46),(15,48,18,45),(19,38,22,41),(20,37,23,40),(21,42,24,39)], [(1,23,11,17),(2,24,12,18),(3,19,7,13),(4,20,8,14),(5,21,9,15),(6,22,10,16),(25,46,31,40),(26,47,32,41),(27,48,33,42),(28,43,34,37),(29,44,35,38),(30,45,36,39)])

Matrix representation of Dic3⋊C4 in GL3(𝔽13) generated by

100
0012
011
,
1200
0911
024
,
500
024
0911
G:=sub<GL(3,GF(13))| [1,0,0,0,0,1,0,12,1],[12,0,0,0,9,2,0,11,4],[5,0,0,0,2,9,0,4,11] >;

Dic3⋊C4 in GAP, Magma, Sage, TeX

{\rm Dic}_3\rtimes C_4
% in TeX

G:=Group("Dic3:C4");
// GroupNames label

G:=SmallGroup(48,12);
// by ID

G=gap.SmallGroup(48,12);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-3,40,101,26,804]);
// Polycyclic

G:=Group<a,b,c|a^6=c^4=1,b^2=a^3,b*a*b^-1=a^-1,a*c=c*a,c*b*c^-1=a^3*b>;
// generators/relations

׿
×
𝔽