Extensions 1→N→G→Q→1 with N=C2×C4×D5 and Q=S3

Direct product G=N×Q with N=C2×C4×D5 and Q=S3
dρLabelID
S3×C2×C4×D5120S3xC2xC4xD5480,1086

Semidirect products G=N:Q with N=C2×C4×D5 and Q=S3
extensionφ:Q→Out NdρLabelID
(C2×C4×D5)⋊1S3 = C60⋊D4φ: S3/C3C2 ⊆ Out C2×C4×D5240(C2xC4xD5):1S3480,525
(C2×C4×D5)⋊2S3 = C127D20φ: S3/C3C2 ⊆ Out C2×C4×D5240(C2xC4xD5):2S3480,526
(C2×C4×D5)⋊3S3 = C2×D125D5φ: S3/C3C2 ⊆ Out C2×C4×D5240(C2xC4xD5):3S3480,1084
(C2×C4×D5)⋊4S3 = C2×C12.28D10φ: S3/C3C2 ⊆ Out C2×C4×D5240(C2xC4xD5):4S3480,1085
(C2×C4×D5)⋊5S3 = C2×D5×D12φ: S3/C3C2 ⊆ Out C2×C4×D5120(C2xC4xD5):5S3480,1087
(C2×C4×D5)⋊6S3 = D5×C4○D12φ: S3/C3C2 ⊆ Out C2×C4×D51204(C2xC4xD5):6S3480,1090
(C2×C4×D5)⋊7S3 = Dic3⋊C4⋊D5φ: S3/C3C2 ⊆ Out C2×C4×D5240(C2xC4xD5):7S3480,424
(C2×C4×D5)⋊8S3 = C4×C15⋊D4φ: S3/C3C2 ⊆ Out C2×C4×D5240(C2xC4xD5):8S3480,515
(C2×C4×D5)⋊9S3 = D6⋊(C4×D5)φ: S3/C3C2 ⊆ Out C2×C4×D5240(C2xC4xD5):9S3480,516
(C2×C4×D5)⋊10S3 = C4×C3⋊D20φ: S3/C3C2 ⊆ Out C2×C4×D5240(C2xC4xD5):10S3480,519
(C2×C4×D5)⋊11S3 = C1520(C4×D4)φ: S3/C3C2 ⊆ Out C2×C4×D5240(C2xC4xD5):11S3480,520
(C2×C4×D5)⋊12S3 = D6⋊C4⋊D5φ: S3/C3C2 ⊆ Out C2×C4×D5240(C2xC4xD5):12S3480,523
(C2×C4×D5)⋊13S3 = D10⋊D12φ: S3/C3C2 ⊆ Out C2×C4×D5240(C2xC4xD5):13S3480,524
(C2×C4×D5)⋊14S3 = D5×D6⋊C4φ: S3/C3C2 ⊆ Out C2×C4×D5120(C2xC4xD5):14S3480,547
(C2×C4×D5)⋊15S3 = C2×D6.D10φ: S3/C3C2 ⊆ Out C2×C4×D5240(C2xC4xD5):15S3480,1083

Non-split extensions G=N.Q with N=C2×C4×D5 and Q=S3
extensionφ:Q→Out NdρLabelID
(C2×C4×D5).1S3 = D5×C4.Dic3φ: S3/C3C2 ⊆ Out C2×C4×D51204(C2xC4xD5).1S3480,358
(C2×C4×D5).2S3 = (C4×D5)⋊Dic3φ: S3/C3C2 ⊆ Out C2×C4×D5240(C2xC4xD5).2S3480,434
(C2×C4×D5).3S3 = C60.67D4φ: S3/C3C2 ⊆ Out C2×C4×D5240(C2xC4xD5).3S3480,435
(C2×C4×D5).4S3 = C60.68D4φ: S3/C3C2 ⊆ Out C2×C4×D5240(C2xC4xD5).4S3480,436
(C2×C4×D5).5S3 = D5×C4⋊Dic3φ: S3/C3C2 ⊆ Out C2×C4×D5240(C2xC4xD5).5S3480,488
(C2×C4×D5).6S3 = C2×D5×Dic6φ: S3/C3C2 ⊆ Out C2×C4×D5240(C2xC4xD5).6S3480,1073
(C2×C4×D5).7S3 = C60.93D4φ: S3/C3C2 ⊆ Out C2×C4×D5240(C2xC4xD5).7S3480,31
(C2×C4×D5).8S3 = C30.7M4(2)φ: S3/C3C2 ⊆ Out C2×C4×D5240(C2xC4xD5).8S3480,308
(C2×C4×D5).9S3 = D10.10D12φ: S3/C3C2 ⊆ Out C2×C4×D5120(C2xC4xD5).9S3480,311
(C2×C4×D5).10S3 = C2×C20.32D6φ: S3/C3C2 ⊆ Out C2×C4×D5240(C2xC4xD5).10S3480,369
(C2×C4×D5).11S3 = D10⋊Dic6φ: S3/C3C2 ⊆ Out C2×C4×D5240(C2xC4xD5).11S3480,425
(C2×C4×D5).12S3 = (D5×C12)⋊C4φ: S3/C3C2 ⊆ Out C2×C4×D5240(C2xC4xD5).12S3480,433
(C2×C4×D5).13S3 = D5×Dic3⋊C4φ: S3/C3C2 ⊆ Out C2×C4×D5240(C2xC4xD5).13S3480,468
(C2×C4×D5).14S3 = C2×C12.F5φ: S3/C3C2 ⊆ Out C2×C4×D5240(C2xC4xD5).14S3480,1061
(C2×C4×D5).15S3 = C2×C60⋊C4φ: S3/C3C2 ⊆ Out C2×C4×D5120(C2xC4xD5).15S3480,1064
(C2×C4×D5).16S3 = C60.59(C2×C4)φ: S3/C3C2 ⊆ Out C2×C4×D51204(C2xC4xD5).16S3480,1062
(C2×C4×D5).17S3 = (C2×C12)⋊6F5φ: S3/C3C2 ⊆ Out C2×C4×D51204(C2xC4xD5).17S3480,1065
(C2×C4×D5).18S3 = C2×C60.C4φ: S3/C3C2 ⊆ Out C2×C4×D5240(C2xC4xD5).18S3480,1060
(C2×C4×D5).19S3 = C2×C4×C3⋊F5φ: S3/C3C2 ⊆ Out C2×C4×D5120(C2xC4xD5).19S3480,1063
(C2×C4×D5).20S3 = C2×D5×C3⋊C8φ: trivial image240(C2xC4xD5).20S3480,357
(C2×C4×D5).21S3 = C4×D5×Dic3φ: trivial image240(C2xC4xD5).21S3480,467

׿
×
𝔽