Copied to
clipboard

G = C2×C60⋊C4order 480 = 25·3·5

Direct product of C2 and C60⋊C4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×C60⋊C4, D10.11D12, D10.8Dic6, C607(C2×C4), (C2×C60)⋊3C4, C61(C4⋊F5), C302(C4⋊C4), (C2×C12)⋊5F5, C127(C2×F5), (D5×C12)⋊7C4, D5⋊(C4⋊Dic3), C10⋊(C4⋊Dic3), (C4×D5)⋊4Dic3, (C6×D5).53D4, D5.2(C2×D12), (C4×D5).91D6, (C2×C20)⋊3Dic3, C202(C2×Dic3), (C6×D5).10Q8, (C6×Dic5)⋊14C4, D5.3(C2×Dic6), C6.36(C22×F5), (C2×Dic5)⋊8Dic3, Dic57(C2×Dic3), C30.74(C22×C4), (C6×D5).61C23, D10.16(C2×Dic3), (C22×D5).102D6, D10.46(C22×S3), C10.5(C22×Dic3), (D5×C12).116C22, C5⋊(C2×C4⋊Dic3), C32(C2×C4⋊F5), C42(C2×C3⋊F5), C153(C2×C4⋊C4), (C2×C4)⋊3(C3⋊F5), (C2×C4×D5).15S3, (C3×D5)⋊4(C4⋊C4), C2.6(C22×C3⋊F5), (C3×D5).9(C2×D4), (D5×C2×C12).18C2, (C2×C6).47(C2×F5), (C3×D5).5(C2×Q8), (C2×C30).41(C2×C4), (C22×C3⋊F5).5C2, C22.19(C2×C3⋊F5), (C6×D5).59(C2×C4), (C2×C3⋊F5).14C22, (C3×Dic5)⋊26(C2×C4), (D5×C2×C6).144C22, (C2×C10).17(C2×Dic3), SmallGroup(480,1064)

Series: Derived Chief Lower central Upper central

C1C30 — C2×C60⋊C4
C1C5C15C3×D5C6×D5C2×C3⋊F5C22×C3⋊F5 — C2×C60⋊C4
C15C30 — C2×C60⋊C4
C1C22C2×C4

Generators and relations for C2×C60⋊C4
 G = < a,b,c | a2=b60=c4=1, ab=ba, ac=ca, cbc-1=b47 >

Subgroups: 908 in 184 conjugacy classes, 81 normal (31 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C5, C6, C6, C6, C2×C4, C2×C4, C23, D5, D5, C10, C10, Dic3, C12, C12, C2×C6, C2×C6, C15, C4⋊C4, C22×C4, Dic5, C20, F5, D10, D10, C2×C10, C2×Dic3, C2×C12, C2×C12, C22×C6, C3×D5, C3×D5, C30, C30, C2×C4⋊C4, C4×D5, C2×Dic5, C2×C20, C2×F5, C22×D5, C4⋊Dic3, C22×Dic3, C22×C12, C3×Dic5, C60, C3⋊F5, C6×D5, C6×D5, C2×C30, C4⋊F5, C2×C4×D5, C22×F5, C2×C4⋊Dic3, D5×C12, C6×Dic5, C2×C60, C2×C3⋊F5, C2×C3⋊F5, D5×C2×C6, C2×C4⋊F5, C60⋊C4, D5×C2×C12, C22×C3⋊F5, C2×C60⋊C4
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Q8, C23, Dic3, D6, C4⋊C4, C22×C4, C2×D4, C2×Q8, F5, Dic6, D12, C2×Dic3, C22×S3, C2×C4⋊C4, C2×F5, C4⋊Dic3, C2×Dic6, C2×D12, C22×Dic3, C3⋊F5, C4⋊F5, C22×F5, C2×C4⋊Dic3, C2×C3⋊F5, C2×C4⋊F5, C60⋊C4, C22×C3⋊F5, C2×C60⋊C4

Smallest permutation representation of C2×C60⋊C4
On 120 points
Generators in S120
(1 72)(2 73)(3 74)(4 75)(5 76)(6 77)(7 78)(8 79)(9 80)(10 81)(11 82)(12 83)(13 84)(14 85)(15 86)(16 87)(17 88)(18 89)(19 90)(20 91)(21 92)(22 93)(23 94)(24 95)(25 96)(26 97)(27 98)(28 99)(29 100)(30 101)(31 102)(32 103)(33 104)(34 105)(35 106)(36 107)(37 108)(38 109)(39 110)(40 111)(41 112)(42 113)(43 114)(44 115)(45 116)(46 117)(47 118)(48 119)(49 120)(50 61)(51 62)(52 63)(53 64)(54 65)(55 66)(56 67)(57 68)(58 69)(59 70)(60 71)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 117)(2 80 50 104)(3 103 39 91)(4 66 28 78)(5 89 17 65)(6 112)(7 75 55 99)(8 98 44 86)(9 61 33 73)(10 84 22 120)(11 107)(12 70 60 94)(13 93 49 81)(14 116 38 68)(15 79 27 115)(16 102)(18 88 54 76)(19 111 43 63)(20 74 32 110)(21 97)(23 83 59 71)(24 106 48 118)(25 69 37 105)(26 92)(29 101 53 113)(30 64 42 100)(31 87)(34 96 58 108)(35 119 47 95)(36 82)(40 114 52 90)(41 77)(45 109 57 85)(46 72)(51 67)(56 62)

G:=sub<Sym(120)| (1,72)(2,73)(3,74)(4,75)(5,76)(6,77)(7,78)(8,79)(9,80)(10,81)(11,82)(12,83)(13,84)(14,85)(15,86)(16,87)(17,88)(18,89)(19,90)(20,91)(21,92)(22,93)(23,94)(24,95)(25,96)(26,97)(27,98)(28,99)(29,100)(30,101)(31,102)(32,103)(33,104)(34,105)(35,106)(36,107)(37,108)(38,109)(39,110)(40,111)(41,112)(42,113)(43,114)(44,115)(45,116)(46,117)(47,118)(48,119)(49,120)(50,61)(51,62)(52,63)(53,64)(54,65)(55,66)(56,67)(57,68)(58,69)(59,70)(60,71), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,117)(2,80,50,104)(3,103,39,91)(4,66,28,78)(5,89,17,65)(6,112)(7,75,55,99)(8,98,44,86)(9,61,33,73)(10,84,22,120)(11,107)(12,70,60,94)(13,93,49,81)(14,116,38,68)(15,79,27,115)(16,102)(18,88,54,76)(19,111,43,63)(20,74,32,110)(21,97)(23,83,59,71)(24,106,48,118)(25,69,37,105)(26,92)(29,101,53,113)(30,64,42,100)(31,87)(34,96,58,108)(35,119,47,95)(36,82)(40,114,52,90)(41,77)(45,109,57,85)(46,72)(51,67)(56,62)>;

G:=Group( (1,72)(2,73)(3,74)(4,75)(5,76)(6,77)(7,78)(8,79)(9,80)(10,81)(11,82)(12,83)(13,84)(14,85)(15,86)(16,87)(17,88)(18,89)(19,90)(20,91)(21,92)(22,93)(23,94)(24,95)(25,96)(26,97)(27,98)(28,99)(29,100)(30,101)(31,102)(32,103)(33,104)(34,105)(35,106)(36,107)(37,108)(38,109)(39,110)(40,111)(41,112)(42,113)(43,114)(44,115)(45,116)(46,117)(47,118)(48,119)(49,120)(50,61)(51,62)(52,63)(53,64)(54,65)(55,66)(56,67)(57,68)(58,69)(59,70)(60,71), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,117)(2,80,50,104)(3,103,39,91)(4,66,28,78)(5,89,17,65)(6,112)(7,75,55,99)(8,98,44,86)(9,61,33,73)(10,84,22,120)(11,107)(12,70,60,94)(13,93,49,81)(14,116,38,68)(15,79,27,115)(16,102)(18,88,54,76)(19,111,43,63)(20,74,32,110)(21,97)(23,83,59,71)(24,106,48,118)(25,69,37,105)(26,92)(29,101,53,113)(30,64,42,100)(31,87)(34,96,58,108)(35,119,47,95)(36,82)(40,114,52,90)(41,77)(45,109,57,85)(46,72)(51,67)(56,62) );

G=PermutationGroup([[(1,72),(2,73),(3,74),(4,75),(5,76),(6,77),(7,78),(8,79),(9,80),(10,81),(11,82),(12,83),(13,84),(14,85),(15,86),(16,87),(17,88),(18,89),(19,90),(20,91),(21,92),(22,93),(23,94),(24,95),(25,96),(26,97),(27,98),(28,99),(29,100),(30,101),(31,102),(32,103),(33,104),(34,105),(35,106),(36,107),(37,108),(38,109),(39,110),(40,111),(41,112),(42,113),(43,114),(44,115),(45,116),(46,117),(47,118),(48,119),(49,120),(50,61),(51,62),(52,63),(53,64),(54,65),(55,66),(56,67),(57,68),(58,69),(59,70),(60,71)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,117),(2,80,50,104),(3,103,39,91),(4,66,28,78),(5,89,17,65),(6,112),(7,75,55,99),(8,98,44,86),(9,61,33,73),(10,84,22,120),(11,107),(12,70,60,94),(13,93,49,81),(14,116,38,68),(15,79,27,115),(16,102),(18,88,54,76),(19,111,43,63),(20,74,32,110),(21,97),(23,83,59,71),(24,106,48,118),(25,69,37,105),(26,92),(29,101,53,113),(30,64,42,100),(31,87),(34,96,58,108),(35,119,47,95),(36,82),(40,114,52,90),(41,77),(45,109,57,85),(46,72),(51,67),(56,62)]])

60 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E···4L 5 6A6B6C6D6E6F6G10A10B10C12A12B12C12D12E12F12G12H15A15B20A20B20C20D30A···30F60A···60H
order12222222344444···456666666101010121212121212121215152020202030···3060···60
size11115555222101030···304222101010104442222101010104444444···44···4

60 irreducible representations

dim1111111222222222244444444
type++++++--+--+-++++
imageC1C2C2C2C4C4C4S3D4Q8Dic3D6Dic3Dic3D6Dic6D12F5C2×F5C2×F5C3⋊F5C4⋊F5C2×C3⋊F5C2×C3⋊F5C60⋊C4
kernelC2×C60⋊C4C60⋊C4D5×C2×C12C22×C3⋊F5D5×C12C6×Dic5C2×C60C2×C4×D5C6×D5C6×D5C4×D5C4×D5C2×Dic5C2×C20C22×D5D10D10C2×C12C12C2×C6C2×C4C6C4C22C2
# reps1412422122221114412124428

Matrix representation of C2×C60⋊C4 in GL8(𝔽61)

10000000
01000000
006000000
000600000
00001000
00000100
00000010
00000001
,
1523000000
3838000000
0021100000
0029400000
000006336
00005555027
000034282834
00002705555
,
439000000
5218000000
0048490000
004130000
000063360
00005555027
00002705555
000006336

G:=sub<GL(8,GF(61))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[15,38,0,0,0,0,0,0,23,38,0,0,0,0,0,0,0,0,21,29,0,0,0,0,0,0,10,40,0,0,0,0,0,0,0,0,0,55,34,27,0,0,0,0,6,55,28,0,0,0,0,0,33,0,28,55,0,0,0,0,6,27,34,55],[43,52,0,0,0,0,0,0,9,18,0,0,0,0,0,0,0,0,48,4,0,0,0,0,0,0,49,13,0,0,0,0,0,0,0,0,6,55,27,0,0,0,0,0,33,55,0,6,0,0,0,0,6,0,55,33,0,0,0,0,0,27,55,6] >;

C2×C60⋊C4 in GAP, Magma, Sage, TeX

C_2\times C_{60}\rtimes C_4
% in TeX

G:=Group("C2xC60:C4");
// GroupNames label

G:=SmallGroup(480,1064);
// by ID

G=gap.SmallGroup(480,1064);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,56,422,100,2693,14118,2379]);
// Polycyclic

G:=Group<a,b,c|a^2=b^60=c^4=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^47>;
// generators/relations

׿
×
𝔽