Copied to
clipboard

G = D10.10D12order 480 = 25·3·5

6th non-split extension by D10 of D12 acting via D12/C12=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D10.10D12, C30.12C42, D10.7Dic6, (C2×C60)⋊6C4, (C2×C12)⋊4F5, C6.5(C4×F5), C6.7(C4⋊F5), (C6×D5).9Q8, (C6×D5).75D4, (C2×C20)⋊2Dic3, C30.14(C4⋊C4), D5.2(D6⋊C4), (C6×Dic5)⋊12C4, D10.14(C4×S3), C2.3(C60⋊C4), (C2×Dic5)⋊6Dic3, C10.7(C4⋊Dic3), C52(C6.C42), C31(D10.3Q8), C10.12(C4×Dic3), C6.19(C22⋊F5), D10.32(C3⋊D4), C30.19(C22⋊C4), D5.2(Dic3⋊C4), C152(C2.C42), (C22×D5).100D6, C10.4(C6.D4), C2.2(D10.D6), (C2×C3⋊F5)⋊3C4, C2.5(C4×C3⋊F5), (C2×C4)⋊2(C3⋊F5), (C2×C4×D5).9S3, (D5×C2×C12).25C2, (C2×C6).39(C2×F5), (C2×C30).33(C2×C4), (C22×C3⋊F5).4C2, C22.14(C2×C3⋊F5), (C3×D5).2(C4⋊C4), (C6×D5).41(C2×C4), (C2×C10).9(C2×Dic3), (D5×C2×C6).142C22, (C3×D5).2(C22⋊C4), SmallGroup(480,311)

Series: Derived Chief Lower central Upper central

C1C30 — D10.10D12
C1C5C15C3×D5C6×D5D5×C2×C6C22×C3⋊F5 — D10.10D12
C15C30 — D10.10D12
C1C22C2×C4

Generators and relations for D10.10D12
 G = < a,b,c,d | a10=b2=c12=1, d2=a4b, bab=a-1, ac=ca, dad-1=a7, bc=cb, dbd-1=a6b, dcd-1=a5c-1 >

Subgroups: 812 in 152 conjugacy classes, 57 normal (35 characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, C6, C6, C2×C4, C2×C4, C23, D5, C10, Dic3, C12, C2×C6, C2×C6, C15, C22×C4, Dic5, C20, F5, D10, D10, C2×C10, C2×Dic3, C2×C12, C2×C12, C22×C6, C3×D5, C30, C2.C42, C4×D5, C2×Dic5, C2×C20, C2×F5, C22×D5, C22×Dic3, C22×C12, C3×Dic5, C60, C3⋊F5, C6×D5, C6×D5, C2×C30, C2×C4×D5, C22×F5, C6.C42, D5×C12, C6×Dic5, C2×C60, C2×C3⋊F5, C2×C3⋊F5, D5×C2×C6, D10.3Q8, D5×C2×C12, C22×C3⋊F5, D10.10D12
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Q8, Dic3, D6, C42, C22⋊C4, C4⋊C4, F5, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C2.C42, C2×F5, C4×Dic3, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C6.D4, C3⋊F5, C4×F5, C4⋊F5, C22⋊F5, C6.C42, C2×C3⋊F5, D10.3Q8, C4×C3⋊F5, C60⋊C4, D10.D6, D10.10D12

Smallest permutation representation of D10.10D12
On 120 points
Generators in S120
(1 98 115 77 24 54 66 85 26 42)(2 99 116 78 13 55 67 86 27 43)(3 100 117 79 14 56 68 87 28 44)(4 101 118 80 15 57 69 88 29 45)(5 102 119 81 16 58 70 89 30 46)(6 103 120 82 17 59 71 90 31 47)(7 104 109 83 18 60 72 91 32 48)(8 105 110 84 19 49 61 92 33 37)(9 106 111 73 20 50 62 93 34 38)(10 107 112 74 21 51 63 94 35 39)(11 108 113 75 22 52 64 95 36 40)(12 97 114 76 23 53 65 96 25 41)
(1 42)(2 43)(3 44)(4 45)(5 46)(6 47)(7 48)(8 37)(9 38)(10 39)(11 40)(12 41)(13 55)(14 56)(15 57)(16 58)(17 59)(18 60)(19 49)(20 50)(21 51)(22 52)(23 53)(24 54)(25 97)(26 98)(27 99)(28 100)(29 101)(30 102)(31 103)(32 104)(33 105)(34 106)(35 107)(36 108)(61 84)(62 73)(63 74)(64 75)(65 76)(66 77)(67 78)(68 79)(69 80)(70 81)(71 82)(72 83)(85 115)(86 116)(87 117)(88 118)(89 119)(90 120)(91 109)(92 110)(93 111)(94 112)(95 113)(96 114)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)
(1 53 54 12)(2 11 55 52)(3 51 56 10)(4 9 57 50)(5 49 58 8)(6 7 59 60)(13 113 99 75)(14 94 100 35)(15 111 101 73)(16 92 102 33)(17 109 103 83)(18 90 104 31)(19 119 105 81)(20 88 106 29)(21 117 107 79)(22 86 108 27)(23 115 97 77)(24 96 98 25)(26 41 85 65)(28 39 87 63)(30 37 89 61)(32 47 91 71)(34 45 93 69)(36 43 95 67)(38 118 62 80)(40 116 64 78)(42 114 66 76)(44 112 68 74)(46 110 70 84)(48 120 72 82)

G:=sub<Sym(120)| (1,98,115,77,24,54,66,85,26,42)(2,99,116,78,13,55,67,86,27,43)(3,100,117,79,14,56,68,87,28,44)(4,101,118,80,15,57,69,88,29,45)(5,102,119,81,16,58,70,89,30,46)(6,103,120,82,17,59,71,90,31,47)(7,104,109,83,18,60,72,91,32,48)(8,105,110,84,19,49,61,92,33,37)(9,106,111,73,20,50,62,93,34,38)(10,107,112,74,21,51,63,94,35,39)(11,108,113,75,22,52,64,95,36,40)(12,97,114,76,23,53,65,96,25,41), (1,42)(2,43)(3,44)(4,45)(5,46)(6,47)(7,48)(8,37)(9,38)(10,39)(11,40)(12,41)(13,55)(14,56)(15,57)(16,58)(17,59)(18,60)(19,49)(20,50)(21,51)(22,52)(23,53)(24,54)(25,97)(26,98)(27,99)(28,100)(29,101)(30,102)(31,103)(32,104)(33,105)(34,106)(35,107)(36,108)(61,84)(62,73)(63,74)(64,75)(65,76)(66,77)(67,78)(68,79)(69,80)(70,81)(71,82)(72,83)(85,115)(86,116)(87,117)(88,118)(89,119)(90,120)(91,109)(92,110)(93,111)(94,112)(95,113)(96,114), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,53,54,12)(2,11,55,52)(3,51,56,10)(4,9,57,50)(5,49,58,8)(6,7,59,60)(13,113,99,75)(14,94,100,35)(15,111,101,73)(16,92,102,33)(17,109,103,83)(18,90,104,31)(19,119,105,81)(20,88,106,29)(21,117,107,79)(22,86,108,27)(23,115,97,77)(24,96,98,25)(26,41,85,65)(28,39,87,63)(30,37,89,61)(32,47,91,71)(34,45,93,69)(36,43,95,67)(38,118,62,80)(40,116,64,78)(42,114,66,76)(44,112,68,74)(46,110,70,84)(48,120,72,82)>;

G:=Group( (1,98,115,77,24,54,66,85,26,42)(2,99,116,78,13,55,67,86,27,43)(3,100,117,79,14,56,68,87,28,44)(4,101,118,80,15,57,69,88,29,45)(5,102,119,81,16,58,70,89,30,46)(6,103,120,82,17,59,71,90,31,47)(7,104,109,83,18,60,72,91,32,48)(8,105,110,84,19,49,61,92,33,37)(9,106,111,73,20,50,62,93,34,38)(10,107,112,74,21,51,63,94,35,39)(11,108,113,75,22,52,64,95,36,40)(12,97,114,76,23,53,65,96,25,41), (1,42)(2,43)(3,44)(4,45)(5,46)(6,47)(7,48)(8,37)(9,38)(10,39)(11,40)(12,41)(13,55)(14,56)(15,57)(16,58)(17,59)(18,60)(19,49)(20,50)(21,51)(22,52)(23,53)(24,54)(25,97)(26,98)(27,99)(28,100)(29,101)(30,102)(31,103)(32,104)(33,105)(34,106)(35,107)(36,108)(61,84)(62,73)(63,74)(64,75)(65,76)(66,77)(67,78)(68,79)(69,80)(70,81)(71,82)(72,83)(85,115)(86,116)(87,117)(88,118)(89,119)(90,120)(91,109)(92,110)(93,111)(94,112)(95,113)(96,114), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,53,54,12)(2,11,55,52)(3,51,56,10)(4,9,57,50)(5,49,58,8)(6,7,59,60)(13,113,99,75)(14,94,100,35)(15,111,101,73)(16,92,102,33)(17,109,103,83)(18,90,104,31)(19,119,105,81)(20,88,106,29)(21,117,107,79)(22,86,108,27)(23,115,97,77)(24,96,98,25)(26,41,85,65)(28,39,87,63)(30,37,89,61)(32,47,91,71)(34,45,93,69)(36,43,95,67)(38,118,62,80)(40,116,64,78)(42,114,66,76)(44,112,68,74)(46,110,70,84)(48,120,72,82) );

G=PermutationGroup([[(1,98,115,77,24,54,66,85,26,42),(2,99,116,78,13,55,67,86,27,43),(3,100,117,79,14,56,68,87,28,44),(4,101,118,80,15,57,69,88,29,45),(5,102,119,81,16,58,70,89,30,46),(6,103,120,82,17,59,71,90,31,47),(7,104,109,83,18,60,72,91,32,48),(8,105,110,84,19,49,61,92,33,37),(9,106,111,73,20,50,62,93,34,38),(10,107,112,74,21,51,63,94,35,39),(11,108,113,75,22,52,64,95,36,40),(12,97,114,76,23,53,65,96,25,41)], [(1,42),(2,43),(3,44),(4,45),(5,46),(6,47),(7,48),(8,37),(9,38),(10,39),(11,40),(12,41),(13,55),(14,56),(15,57),(16,58),(17,59),(18,60),(19,49),(20,50),(21,51),(22,52),(23,53),(24,54),(25,97),(26,98),(27,99),(28,100),(29,101),(30,102),(31,103),(32,104),(33,105),(34,106),(35,107),(36,108),(61,84),(62,73),(63,74),(64,75),(65,76),(66,77),(67,78),(68,79),(69,80),(70,81),(71,82),(72,83),(85,115),(86,116),(87,117),(88,118),(89,119),(90,120),(91,109),(92,110),(93,111),(94,112),(95,113),(96,114)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120)], [(1,53,54,12),(2,11,55,52),(3,51,56,10),(4,9,57,50),(5,49,58,8),(6,7,59,60),(13,113,99,75),(14,94,100,35),(15,111,101,73),(16,92,102,33),(17,109,103,83),(18,90,104,31),(19,119,105,81),(20,88,106,29),(21,117,107,79),(22,86,108,27),(23,115,97,77),(24,96,98,25),(26,41,85,65),(28,39,87,63),(30,37,89,61),(32,47,91,71),(34,45,93,69),(36,43,95,67),(38,118,62,80),(40,116,64,78),(42,114,66,76),(44,112,68,74),(46,110,70,84),(48,120,72,82)]])

60 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E···4L 5 6A6B6C6D6E6F6G10A10B10C12A12B12C12D12E12F12G12H15A15B20A20B20C20D30A···30F60A···60H
order12222222344444···456666666101010121212121212121215152020202030···3060···60
size11115555222101030···304222101010104442222101010104444444···44···4

60 irreducible representations

dim11111122222222224444444444
type+++++---+-++++
imageC1C2C2C4C4C4S3D4Q8Dic3Dic3D6Dic6C4×S3D12C3⋊D4F5C2×F5C3⋊F5C4×F5C4⋊F5C22⋊F5C2×C3⋊F5C4×C3⋊F5C60⋊C4D10.D6
kernelD10.10D12D5×C2×C12C22×C3⋊F5C6×Dic5C2×C60C2×C3⋊F5C2×C4×D5C6×D5C6×D5C2×Dic5C2×C20C22×D5D10D10D10D10C2×C12C2×C6C2×C4C6C6C6C22C2C2C2
# reps11222813111124241122222444

Matrix representation of D10.10D12 in GL6(𝔽61)

100000
010000
0000160
000010
0060010
0006010
,
6000000
0600000
0000060
0000600
0006000
0060000
,
4470000
35250000
0085605
0003565
0055630
0050568
,
30160000
39310000
00356558
00056853
00560553
00563058

G:=sub<GL(6,GF(61))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,60,0,0,1,1,1,1,0,0,60,0,0,0],[60,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,0,60,0,0,0,0,60,0,0,0,0,60,0,0,0,0,60,0,0,0],[44,35,0,0,0,0,7,25,0,0,0,0,0,0,8,0,5,5,0,0,56,3,56,0,0,0,0,56,3,56,0,0,5,5,0,8],[30,39,0,0,0,0,16,31,0,0,0,0,0,0,3,0,56,56,0,0,56,56,0,3,0,0,5,8,5,0,0,0,58,53,53,58] >;

D10.10D12 in GAP, Magma, Sage, TeX

D_{10}._{10}D_{12}
% in TeX

G:=Group("D10.10D12");
// GroupNames label

G:=SmallGroup(480,311);
// by ID

G=gap.SmallGroup(480,311);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,28,253,64,2693,14118,4724]);
// Polycyclic

G:=Group<a,b,c,d|a^10=b^2=c^12=1,d^2=a^4*b,b*a*b=a^-1,a*c=c*a,d*a*d^-1=a^7,b*c=c*b,d*b*d^-1=a^6*b,d*c*d^-1=a^5*c^-1>;
// generators/relations

׿
×
𝔽