Extensions 1→N→G→Q→1 with N=S3×D20 and Q=C2

Direct product G=N×Q with N=S3×D20 and Q=C2
dρLabelID
C2×S3×D20120C2xS3xD20480,1088

Semidirect products G=N:Q with N=S3×D20 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×D20)⋊1C2 = S3×D4⋊D5φ: C2/C1C2 ⊆ Out S3×D201208+(S3xD20):1C2480,555
(S3×D20)⋊2C2 = D60.C22φ: C2/C1C2 ⊆ Out S3×D201208+(S3xD20):2C2480,556
(S3×D20)⋊3C2 = D12⋊D10φ: C2/C1C2 ⊆ Out S3×D201208+(S3xD20):3C2480,580
(S3×D20)⋊4C2 = S3×D4×D5φ: C2/C1C2 ⊆ Out S3×D20608+(S3xD20):4C2480,1097
(S3×D20)⋊5C2 = D2014D6φ: C2/C1C2 ⊆ Out S3×D201208+(S3xD20):5C2480,1102
(S3×D20)⋊6C2 = S3×Q82D5φ: C2/C1C2 ⊆ Out S3×D201208+(S3xD20):6C2480,1109
(S3×D20)⋊7C2 = D2017D6φ: C2/C1C2 ⊆ Out S3×D201208+(S3xD20):7C2480,1111
(S3×D20)⋊8C2 = S3×D40φ: C2/C1C2 ⊆ Out S3×D201204+(S3xD20):8C2480,328
(S3×D20)⋊9C2 = C401D6φ: C2/C1C2 ⊆ Out S3×D201204+(S3xD20):9C2480,329
(S3×D20)⋊10C2 = D40⋊S3φ: C2/C1C2 ⊆ Out S3×D201204(S3xD20):10C2480,330
(S3×D20)⋊11C2 = D2025D6φ: C2/C1C2 ⊆ Out S3×D201204(S3xD20):11C2480,1093
(S3×D20)⋊12C2 = D2029D6φ: C2/C1C2 ⊆ Out S3×D201204+(S3xD20):12C2480,1095
(S3×D20)⋊13C2 = S3×C4○D20φ: trivial image1204(S3xD20):13C2480,1091

Non-split extensions G=N.Q with N=S3×D20 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×D20).1C2 = S3×Q8⋊D5φ: C2/C1C2 ⊆ Out S3×D201208+(S3xD20).1C2480,579
(S3×D20).2C2 = S3×C40⋊C2φ: C2/C1C2 ⊆ Out S3×D201204(S3xD20).2C2480,327

׿
×
𝔽