direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: S3×D20, C20⋊4D6, D10⋊1D6, D60⋊7C2, C12⋊1D10, C60⋊2C22, Dic3⋊3D10, D6.10D10, D30⋊2C22, C30.13C23, C5⋊1(S3×D4), C4⋊1(S3×D5), C3⋊1(C2×D20), C15⋊2(C2×D4), (C4×S3)⋊3D5, (C5×S3)⋊1D4, (S3×C20)⋊3C2, (C3×D20)⋊3C2, C3⋊D20⋊3C2, (C6×D5)⋊1C22, C6.13(C22×D5), C10.13(C22×S3), (C5×Dic3)⋊4C22, (S3×C10).10C22, (C2×S3×D5)⋊2C2, C2.16(C2×S3×D5), SmallGroup(240,137)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for S3×D20
G = < a,b,c,d | a3=b2=c20=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Subgroups: 616 in 108 conjugacy classes, 36 normal (22 characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, S3, S3, C6, C6, C2×C4, D4, C23, D5, C10, C10, Dic3, C12, D6, D6, C2×C6, C15, C2×D4, C20, C20, D10, D10, C2×C10, C4×S3, D12, C3⋊D4, C3×D4, C22×S3, C5×S3, C3×D5, D15, C30, D20, D20, C2×C20, C22×D5, S3×D4, C5×Dic3, C60, S3×D5, C6×D5, S3×C10, D30, C2×D20, C3⋊D20, C3×D20, S3×C20, D60, C2×S3×D5, S3×D20
Quotients: C1, C2, C22, S3, D4, C23, D5, D6, C2×D4, D10, C22×S3, D20, C22×D5, S3×D4, S3×D5, C2×D20, C2×S3×D5, S3×D20
(1 25 47)(2 26 48)(3 27 49)(4 28 50)(5 29 51)(6 30 52)(7 31 53)(8 32 54)(9 33 55)(10 34 56)(11 35 57)(12 36 58)(13 37 59)(14 38 60)(15 39 41)(16 40 42)(17 21 43)(18 22 44)(19 23 45)(20 24 46)
(21 43)(22 44)(23 45)(24 46)(25 47)(26 48)(27 49)(28 50)(29 51)(30 52)(31 53)(32 54)(33 55)(34 56)(35 57)(36 58)(37 59)(38 60)(39 41)(40 42)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 20)(17 19)(21 23)(24 40)(25 39)(26 38)(27 37)(28 36)(29 35)(30 34)(31 33)(41 47)(42 46)(43 45)(48 60)(49 59)(50 58)(51 57)(52 56)(53 55)
G:=sub<Sym(60)| (1,25,47)(2,26,48)(3,27,49)(4,28,50)(5,29,51)(6,30,52)(7,31,53)(8,32,54)(9,33,55)(10,34,56)(11,35,57)(12,36,58)(13,37,59)(14,38,60)(15,39,41)(16,40,42)(17,21,43)(18,22,44)(19,23,45)(20,24,46), (21,43)(22,44)(23,45)(24,46)(25,47)(26,48)(27,49)(28,50)(29,51)(30,52)(31,53)(32,54)(33,55)(34,56)(35,57)(36,58)(37,59)(38,60)(39,41)(40,42), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,23)(24,40)(25,39)(26,38)(27,37)(28,36)(29,35)(30,34)(31,33)(41,47)(42,46)(43,45)(48,60)(49,59)(50,58)(51,57)(52,56)(53,55)>;
G:=Group( (1,25,47)(2,26,48)(3,27,49)(4,28,50)(5,29,51)(6,30,52)(7,31,53)(8,32,54)(9,33,55)(10,34,56)(11,35,57)(12,36,58)(13,37,59)(14,38,60)(15,39,41)(16,40,42)(17,21,43)(18,22,44)(19,23,45)(20,24,46), (21,43)(22,44)(23,45)(24,46)(25,47)(26,48)(27,49)(28,50)(29,51)(30,52)(31,53)(32,54)(33,55)(34,56)(35,57)(36,58)(37,59)(38,60)(39,41)(40,42), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,23)(24,40)(25,39)(26,38)(27,37)(28,36)(29,35)(30,34)(31,33)(41,47)(42,46)(43,45)(48,60)(49,59)(50,58)(51,57)(52,56)(53,55) );
G=PermutationGroup([[(1,25,47),(2,26,48),(3,27,49),(4,28,50),(5,29,51),(6,30,52),(7,31,53),(8,32,54),(9,33,55),(10,34,56),(11,35,57),(12,36,58),(13,37,59),(14,38,60),(15,39,41),(16,40,42),(17,21,43),(18,22,44),(19,23,45),(20,24,46)], [(21,43),(22,44),(23,45),(24,46),(25,47),(26,48),(27,49),(28,50),(29,51),(30,52),(31,53),(32,54),(33,55),(34,56),(35,57),(36,58),(37,59),(38,60),(39,41),(40,42)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,20),(17,19),(21,23),(24,40),(25,39),(26,38),(27,37),(28,36),(29,35),(30,34),(31,33),(41,47),(42,46),(43,45),(48,60),(49,59),(50,58),(51,57),(52,56),(53,55)]])
S3×D20 is a maximal subgroup of
C40⋊1D6 D40⋊S3 D60.C22 D12⋊D10 D20⋊25D6 D20⋊29D6 S3×D4×D5 D20⋊14D6 D20⋊17D6
S3×D20 is a maximal quotient of
C40⋊1D6 D40⋊S3 Dic20⋊S3 D6.1D20 D40⋊7S3 C40.2D6 D120⋊5C2 Dic3.D20 Dic3⋊4D20 Dic3⋊D20 D10⋊2Dic6 D6.D20 D60⋊14C4 D30⋊4Q8 D6⋊D20 C60⋊4D4 D6.9D20 C12⋊D20 D30⋊2D4 C60⋊6D4 C20⋊4Dic6 D6⋊4D20 D30⋊5D4
39 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3 | 4A | 4B | 5A | 5B | 6A | 6B | 6C | 10A | 10B | 10C | 10D | 10E | 10F | 12 | 15A | 15B | 20A | 20B | 20C | 20D | 20E | 20F | 20G | 20H | 30A | 30B | 60A | 60B | 60C | 60D |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 5 | 5 | 6 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | 10 | 12 | 15 | 15 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 30 | 30 | 60 | 60 | 60 | 60 |
size | 1 | 1 | 3 | 3 | 10 | 10 | 30 | 30 | 2 | 2 | 6 | 2 | 2 | 2 | 20 | 20 | 2 | 2 | 6 | 6 | 6 | 6 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 4 | 4 | 4 | 4 | 4 | 4 |
39 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | C2 | C2 | S3 | D4 | D5 | D6 | D6 | D10 | D10 | D10 | D20 | S3×D4 | S3×D5 | C2×S3×D5 | S3×D20 |
kernel | S3×D20 | C3⋊D20 | C3×D20 | S3×C20 | D60 | C2×S3×D5 | D20 | C5×S3 | C4×S3 | C20 | D10 | Dic3 | C12 | D6 | S3 | C5 | C4 | C2 | C1 |
# reps | 1 | 2 | 1 | 1 | 1 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 8 | 1 | 2 | 2 | 4 |
Matrix representation of S3×D20 ►in GL4(𝔽61) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 60 | 60 |
0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 60 | 60 |
36 | 32 | 0 | 0 |
2 | 34 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
19 | 60 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(61))| [1,0,0,0,0,1,0,0,0,0,60,1,0,0,60,0],[1,0,0,0,0,1,0,0,0,0,1,60,0,0,0,60],[36,2,0,0,32,34,0,0,0,0,1,0,0,0,0,1],[1,19,0,0,0,60,0,0,0,0,1,0,0,0,0,1] >;
S3×D20 in GAP, Magma, Sage, TeX
S_3\times D_{20}
% in TeX
G:=Group("S3xD20");
// GroupNames label
G:=SmallGroup(240,137);
// by ID
G=gap.SmallGroup(240,137);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-5,218,50,490,6917]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^2=c^20=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations