# Extensions 1→N→G→Q→1 with N=C22 and Q=D5×A4

Direct product G=N×Q with N=C22 and Q=D5×A4
dρLabelID
C22×D5×A460C2^2xD5xA4480,1202

Semidirect products G=N:Q with N=C22 and Q=D5×A4
extensionφ:Q→Aut NdρLabelID
C22⋊(D5×A4) = D5×C22⋊A4φ: D5×A4/C22×D5C3 ⊆ Aut C2260C2^2:(D5xA4)480,1203
C222(D5×A4) = A4×C5⋊D4φ: D5×A4/C5×A4C2 ⊆ Aut C22606C2^2:2(D5xA4)480,1045

Non-split extensions G=N.Q with N=C22 and Q=D5×A4
extensionφ:Q→Aut NdρLabelID
C22.1(D5×A4) = C204D4⋊C3φ: D5×A4/C22×D5C3 ⊆ Aut C22606+C2^2.1(D5xA4)480,262
C22.2(D5×A4) = (C4×C20)⋊C6φ: D5×A4/C22×D5C3 ⊆ Aut C22806C2^2.2(D5xA4)480,263
C22.3(D5×A4) = D5×C42⋊C3φ: D5×A4/C22×D5C3 ⊆ Aut C22606C2^2.3(D5xA4)480,264
C22.4(D5×A4) = (C22×D5)⋊A4φ: D5×A4/C22×D5C3 ⊆ Aut C22406C2^2.4(D5xA4)480,268
C22.5(D5×A4) = SL2(𝔽3).11D10φ: D5×A4/C5×A4C2 ⊆ Aut C22804C2^2.5(D5xA4)480,1040
C22.6(D5×A4) = Dic5×SL2(𝔽3)central extension (φ=1)160C2^2.6(D5xA4)480,266
C22.7(D5×A4) = C2×Dic5.A4central extension (φ=1)160C2^2.7(D5xA4)480,1038
C22.8(D5×A4) = C2×D5×SL2(𝔽3)central extension (φ=1)80C2^2.8(D5xA4)480,1039
C22.9(D5×A4) = C2×A4×Dic5central extension (φ=1)120C2^2.9(D5xA4)480,1044

׿
×
𝔽