Copied to
clipboard

G = C2×A4×Dic5order 480 = 25·3·5

Direct product of C2, A4 and Dic5

direct product, metabelian, soluble, monomial, A-group

Aliases: C2×A4×Dic5, C102(C4×A4), (C10×A4)⋊4C4, C24.(C3×D5), (C23×C10).C6, C22⋊(C6×Dic5), (C23×Dic5)⋊C3, C22.9(D5×A4), (C22×C10)⋊2C12, (C2×A4).16D10, (C22×A4).2D5, C232(C3×Dic5), C23.13(C6×D5), C10.10(C22×A4), (C22×Dic5)⋊3C6, (C10×A4).16C22, C53(C2×C4×A4), C2.2(C2×D5×A4), (A4×C2×C10).2C2, (C5×A4)⋊11(C2×C4), (C2×C10)⋊4(C2×C12), (C2×C10).14(C2×A4), (C22×C10).4(C2×C6), SmallGroup(480,1044)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C2×A4×Dic5
C1C5C2×C10C22×C10C10×A4A4×Dic5 — C2×A4×Dic5
C2×C10 — C2×A4×Dic5
C1C22

Generators and relations for C2×A4×Dic5
 G = < a,b,c,d,e,f | a2=b2=c2=d3=e10=1, f2=e5, ab=ba, ac=ca, ad=da, ae=ea, af=fa, dbd-1=bc=cb, be=eb, bf=fb, dcd-1=b, ce=ec, cf=fc, de=ed, df=fd, fef-1=e-1 >

Subgroups: 580 in 132 conjugacy classes, 39 normal (21 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C5, C6, C2×C4, C23, C23, C23, C10, C10, C10, C12, A4, C2×C6, C15, C22×C4, C24, Dic5, Dic5, C2×C10, C2×C10, C2×C12, C2×A4, C2×A4, C30, C23×C4, C2×Dic5, C2×Dic5, C22×C10, C22×C10, C22×C10, C4×A4, C22×A4, C3×Dic5, C5×A4, C2×C30, C22×Dic5, C22×Dic5, C23×C10, C2×C4×A4, C6×Dic5, C10×A4, C10×A4, C23×Dic5, A4×Dic5, A4×C2×C10, C2×A4×Dic5
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D5, C12, A4, C2×C6, Dic5, D10, C2×C12, C2×A4, C3×D5, C2×Dic5, C4×A4, C22×A4, C3×Dic5, C6×D5, C2×C4×A4, C6×Dic5, D5×A4, A4×Dic5, C2×D5×A4, C2×A4×Dic5

Smallest permutation representation of C2×A4×Dic5
On 120 points
Generators in S120
(1 28)(2 29)(3 30)(4 21)(5 22)(6 23)(7 24)(8 25)(9 26)(10 27)(11 115)(12 116)(13 117)(14 118)(15 119)(16 120)(17 111)(18 112)(19 113)(20 114)(31 43)(32 44)(33 45)(34 46)(35 47)(36 48)(37 49)(38 50)(39 41)(40 42)(51 70)(52 61)(53 62)(54 63)(55 64)(56 65)(57 66)(58 67)(59 68)(60 69)(71 88)(72 89)(73 90)(74 81)(75 82)(76 83)(77 84)(78 85)(79 86)(80 87)(91 108)(92 109)(93 110)(94 101)(95 102)(96 103)(97 104)(98 105)(99 106)(100 107)
(1 28)(2 29)(3 30)(4 21)(5 22)(6 23)(7 24)(8 25)(9 26)(10 27)(31 43)(32 44)(33 45)(34 46)(35 47)(36 48)(37 49)(38 50)(39 41)(40 42)(71 88)(72 89)(73 90)(74 81)(75 82)(76 83)(77 84)(78 85)(79 86)(80 87)(91 108)(92 109)(93 110)(94 101)(95 102)(96 103)(97 104)(98 105)(99 106)(100 107)
(1 28)(2 29)(3 30)(4 21)(5 22)(6 23)(7 24)(8 25)(9 26)(10 27)(11 115)(12 116)(13 117)(14 118)(15 119)(16 120)(17 111)(18 112)(19 113)(20 114)(51 70)(52 61)(53 62)(54 63)(55 64)(56 65)(57 66)(58 67)(59 68)(60 69)(71 88)(72 89)(73 90)(74 81)(75 82)(76 83)(77 84)(78 85)(79 86)(80 87)
(1 56 36)(2 57 37)(3 58 38)(4 59 39)(5 60 40)(6 51 31)(7 52 32)(8 53 33)(9 54 34)(10 55 35)(11 102 82)(12 103 83)(13 104 84)(14 105 85)(15 106 86)(16 107 87)(17 108 88)(18 109 89)(19 110 90)(20 101 81)(21 68 41)(22 69 42)(23 70 43)(24 61 44)(25 62 45)(26 63 46)(27 64 47)(28 65 48)(29 66 49)(30 67 50)(71 111 91)(72 112 92)(73 113 93)(74 114 94)(75 115 95)(76 116 96)(77 117 97)(78 118 98)(79 119 99)(80 120 100)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)
(1 75 6 80)(2 74 7 79)(3 73 8 78)(4 72 9 77)(5 71 10 76)(11 70 16 65)(12 69 17 64)(13 68 18 63)(14 67 19 62)(15 66 20 61)(21 89 26 84)(22 88 27 83)(23 87 28 82)(24 86 29 81)(25 85 30 90)(31 100 36 95)(32 99 37 94)(33 98 38 93)(34 97 39 92)(35 96 40 91)(41 109 46 104)(42 108 47 103)(43 107 48 102)(44 106 49 101)(45 105 50 110)(51 120 56 115)(52 119 57 114)(53 118 58 113)(54 117 59 112)(55 116 60 111)

G:=sub<Sym(120)| (1,28)(2,29)(3,30)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,27)(11,115)(12,116)(13,117)(14,118)(15,119)(16,120)(17,111)(18,112)(19,113)(20,114)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48)(37,49)(38,50)(39,41)(40,42)(51,70)(52,61)(53,62)(54,63)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69)(71,88)(72,89)(73,90)(74,81)(75,82)(76,83)(77,84)(78,85)(79,86)(80,87)(91,108)(92,109)(93,110)(94,101)(95,102)(96,103)(97,104)(98,105)(99,106)(100,107), (1,28)(2,29)(3,30)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,27)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48)(37,49)(38,50)(39,41)(40,42)(71,88)(72,89)(73,90)(74,81)(75,82)(76,83)(77,84)(78,85)(79,86)(80,87)(91,108)(92,109)(93,110)(94,101)(95,102)(96,103)(97,104)(98,105)(99,106)(100,107), (1,28)(2,29)(3,30)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,27)(11,115)(12,116)(13,117)(14,118)(15,119)(16,120)(17,111)(18,112)(19,113)(20,114)(51,70)(52,61)(53,62)(54,63)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69)(71,88)(72,89)(73,90)(74,81)(75,82)(76,83)(77,84)(78,85)(79,86)(80,87), (1,56,36)(2,57,37)(3,58,38)(4,59,39)(5,60,40)(6,51,31)(7,52,32)(8,53,33)(9,54,34)(10,55,35)(11,102,82)(12,103,83)(13,104,84)(14,105,85)(15,106,86)(16,107,87)(17,108,88)(18,109,89)(19,110,90)(20,101,81)(21,68,41)(22,69,42)(23,70,43)(24,61,44)(25,62,45)(26,63,46)(27,64,47)(28,65,48)(29,66,49)(30,67,50)(71,111,91)(72,112,92)(73,113,93)(74,114,94)(75,115,95)(76,116,96)(77,117,97)(78,118,98)(79,119,99)(80,120,100), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120), (1,75,6,80)(2,74,7,79)(3,73,8,78)(4,72,9,77)(5,71,10,76)(11,70,16,65)(12,69,17,64)(13,68,18,63)(14,67,19,62)(15,66,20,61)(21,89,26,84)(22,88,27,83)(23,87,28,82)(24,86,29,81)(25,85,30,90)(31,100,36,95)(32,99,37,94)(33,98,38,93)(34,97,39,92)(35,96,40,91)(41,109,46,104)(42,108,47,103)(43,107,48,102)(44,106,49,101)(45,105,50,110)(51,120,56,115)(52,119,57,114)(53,118,58,113)(54,117,59,112)(55,116,60,111)>;

G:=Group( (1,28)(2,29)(3,30)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,27)(11,115)(12,116)(13,117)(14,118)(15,119)(16,120)(17,111)(18,112)(19,113)(20,114)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48)(37,49)(38,50)(39,41)(40,42)(51,70)(52,61)(53,62)(54,63)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69)(71,88)(72,89)(73,90)(74,81)(75,82)(76,83)(77,84)(78,85)(79,86)(80,87)(91,108)(92,109)(93,110)(94,101)(95,102)(96,103)(97,104)(98,105)(99,106)(100,107), (1,28)(2,29)(3,30)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,27)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48)(37,49)(38,50)(39,41)(40,42)(71,88)(72,89)(73,90)(74,81)(75,82)(76,83)(77,84)(78,85)(79,86)(80,87)(91,108)(92,109)(93,110)(94,101)(95,102)(96,103)(97,104)(98,105)(99,106)(100,107), (1,28)(2,29)(3,30)(4,21)(5,22)(6,23)(7,24)(8,25)(9,26)(10,27)(11,115)(12,116)(13,117)(14,118)(15,119)(16,120)(17,111)(18,112)(19,113)(20,114)(51,70)(52,61)(53,62)(54,63)(55,64)(56,65)(57,66)(58,67)(59,68)(60,69)(71,88)(72,89)(73,90)(74,81)(75,82)(76,83)(77,84)(78,85)(79,86)(80,87), (1,56,36)(2,57,37)(3,58,38)(4,59,39)(5,60,40)(6,51,31)(7,52,32)(8,53,33)(9,54,34)(10,55,35)(11,102,82)(12,103,83)(13,104,84)(14,105,85)(15,106,86)(16,107,87)(17,108,88)(18,109,89)(19,110,90)(20,101,81)(21,68,41)(22,69,42)(23,70,43)(24,61,44)(25,62,45)(26,63,46)(27,64,47)(28,65,48)(29,66,49)(30,67,50)(71,111,91)(72,112,92)(73,113,93)(74,114,94)(75,115,95)(76,116,96)(77,117,97)(78,118,98)(79,119,99)(80,120,100), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120), (1,75,6,80)(2,74,7,79)(3,73,8,78)(4,72,9,77)(5,71,10,76)(11,70,16,65)(12,69,17,64)(13,68,18,63)(14,67,19,62)(15,66,20,61)(21,89,26,84)(22,88,27,83)(23,87,28,82)(24,86,29,81)(25,85,30,90)(31,100,36,95)(32,99,37,94)(33,98,38,93)(34,97,39,92)(35,96,40,91)(41,109,46,104)(42,108,47,103)(43,107,48,102)(44,106,49,101)(45,105,50,110)(51,120,56,115)(52,119,57,114)(53,118,58,113)(54,117,59,112)(55,116,60,111) );

G=PermutationGroup([[(1,28),(2,29),(3,30),(4,21),(5,22),(6,23),(7,24),(8,25),(9,26),(10,27),(11,115),(12,116),(13,117),(14,118),(15,119),(16,120),(17,111),(18,112),(19,113),(20,114),(31,43),(32,44),(33,45),(34,46),(35,47),(36,48),(37,49),(38,50),(39,41),(40,42),(51,70),(52,61),(53,62),(54,63),(55,64),(56,65),(57,66),(58,67),(59,68),(60,69),(71,88),(72,89),(73,90),(74,81),(75,82),(76,83),(77,84),(78,85),(79,86),(80,87),(91,108),(92,109),(93,110),(94,101),(95,102),(96,103),(97,104),(98,105),(99,106),(100,107)], [(1,28),(2,29),(3,30),(4,21),(5,22),(6,23),(7,24),(8,25),(9,26),(10,27),(31,43),(32,44),(33,45),(34,46),(35,47),(36,48),(37,49),(38,50),(39,41),(40,42),(71,88),(72,89),(73,90),(74,81),(75,82),(76,83),(77,84),(78,85),(79,86),(80,87),(91,108),(92,109),(93,110),(94,101),(95,102),(96,103),(97,104),(98,105),(99,106),(100,107)], [(1,28),(2,29),(3,30),(4,21),(5,22),(6,23),(7,24),(8,25),(9,26),(10,27),(11,115),(12,116),(13,117),(14,118),(15,119),(16,120),(17,111),(18,112),(19,113),(20,114),(51,70),(52,61),(53,62),(54,63),(55,64),(56,65),(57,66),(58,67),(59,68),(60,69),(71,88),(72,89),(73,90),(74,81),(75,82),(76,83),(77,84),(78,85),(79,86),(80,87)], [(1,56,36),(2,57,37),(3,58,38),(4,59,39),(5,60,40),(6,51,31),(7,52,32),(8,53,33),(9,54,34),(10,55,35),(11,102,82),(12,103,83),(13,104,84),(14,105,85),(15,106,86),(16,107,87),(17,108,88),(18,109,89),(19,110,90),(20,101,81),(21,68,41),(22,69,42),(23,70,43),(24,61,44),(25,62,45),(26,63,46),(27,64,47),(28,65,48),(29,66,49),(30,67,50),(71,111,91),(72,112,92),(73,113,93),(74,114,94),(75,115,95),(76,116,96),(77,117,97),(78,118,98),(79,119,99),(80,120,100)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120)], [(1,75,6,80),(2,74,7,79),(3,73,8,78),(4,72,9,77),(5,71,10,76),(11,70,16,65),(12,69,17,64),(13,68,18,63),(14,67,19,62),(15,66,20,61),(21,89,26,84),(22,88,27,83),(23,87,28,82),(24,86,29,81),(25,85,30,90),(31,100,36,95),(32,99,37,94),(33,98,38,93),(34,97,39,92),(35,96,40,91),(41,109,46,104),(42,108,47,103),(43,107,48,102),(44,106,49,101),(45,105,50,110),(51,120,56,115),(52,119,57,114),(53,118,58,113),(54,117,59,112),(55,116,60,111)]])

64 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B4A4B4C4D4E4F4G4H5A5B6A···6F10A···10F10G···10N12A···12H15A15B15C15D30A···30L
order122222223344444444556···610···1010···1012···121515151530···30
size1111333344555515151515224···42···26···620···2088888···8

64 irreducible representations

dim111111112222223333666
type++++-+++++-+
imageC1C2C2C3C4C6C6C12D5Dic5D10C3×D5C3×Dic5C6×D5A4C2×A4C2×A4C4×A4D5×A4A4×Dic5C2×D5×A4
kernelC2×A4×Dic5A4×Dic5A4×C2×C10C23×Dic5C10×A4C22×Dic5C23×C10C22×C10C22×A4C2×A4C2×A4C24C23C23C2×Dic5Dic5C2×C10C10C22C2C2
# reps121244282424841214242

Matrix representation of C2×A4×Dic5 in GL7(𝔽61)

60000000
06000000
00600000
00060000
0000100
0000010
0000001
,
1000000
0100000
0010000
0001000
0000100
00000600
000048060
,
1000000
0100000
0010000
0001000
00006000
0000010
000004760
,
47000000
04700000
0010000
0001000
0000484759
00006000
00000013
,
446000000
1000000
00171000
00600000
0000100
0000010
0000001
,
375300000
342400000
004134000
00820000
0000100
0000010
0000001

G:=sub<GL(7,GF(61))| [60,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,48,0,0,0,0,0,60,0,0,0,0,0,0,0,60],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,1,47,0,0,0,0,0,0,60],[47,0,0,0,0,0,0,0,47,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,48,60,0,0,0,0,0,47,0,0,0,0,0,0,59,0,13],[44,1,0,0,0,0,0,60,0,0,0,0,0,0,0,0,17,60,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[37,34,0,0,0,0,0,53,24,0,0,0,0,0,0,0,41,8,0,0,0,0,0,34,20,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1] >;

C2×A4×Dic5 in GAP, Magma, Sage, TeX

C_2\times A_4\times {\rm Dic}_5
% in TeX

G:=Group("C2xA4xDic5");
// GroupNames label

G:=SmallGroup(480,1044);
// by ID

G=gap.SmallGroup(480,1044);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,2,-5,84,648,271,18822]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^3=e^10=1,f^2=e^5,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,d*b*d^-1=b*c=c*b,b*e=e*b,b*f=f*b,d*c*d^-1=b,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^-1>;
// generators/relations

׿
×
𝔽