Aliases: SL2(𝔽3).11D10, C5⋊D4.A4, Q8⋊2D5⋊C6, (Q8×D5)⋊1C6, C5⋊1(D4.A4), (Q8×C10)⋊2C6, Q8.2(C6×D5), D10.1(C2×A4), Q8.10D10⋊C3, C22.5(D5×A4), Dic5.A4⋊4C2, C10.6(C22×A4), Dic5.2(C2×A4), (C2×SL2(𝔽3))⋊1D5, (D5×SL2(𝔽3))⋊4C2, (C10×SL2(𝔽3))⋊6C2, (C5×SL2(𝔽3)).11C22, (C2×Q8)⋊(C3×D5), C2.7(C2×D5×A4), (C5×Q8).2(C2×C6), (C2×C10).13(C2×A4), SmallGroup(480,1040)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C2 — C10 — C5×Q8 — C5×SL2(𝔽3) — D5×SL2(𝔽3) — SL2(𝔽3).11D10 |
C5×Q8 — SL2(𝔽3).11D10 |
Generators and relations for SL2(𝔽3).11D10
G = < a,b,c,d,e | a4=c3=d10=1, b2=e2=a2, bab-1=a-1, cac-1=b, ad=da, ae=ea, cbc-1=ab, bd=db, be=eb, cd=dc, ce=ec, ede-1=a2d-1 >
Subgroups: 574 in 92 conjugacy classes, 23 normal (all characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, C6, C2×C4, D4, Q8, Q8, D5, C10, C10, C12, C2×C6, C15, C2×Q8, C2×Q8, C4○D4, Dic5, Dic5, C20, D10, D10, C2×C10, SL2(𝔽3), C3×D4, C3×D5, C30, 2- 1+4, Dic10, C4×D5, D20, C5⋊D4, C5⋊D4, C2×C20, C5×Q8, C5×Q8, C2×SL2(𝔽3), C2×SL2(𝔽3), C4.A4, C3×Dic5, C6×D5, C2×C30, C4○D20, Q8×D5, Q8×D5, Q8⋊2D5, Q8⋊2D5, Q8×C10, D4.A4, C5×SL2(𝔽3), C3×C5⋊D4, Q8.10D10, Dic5.A4, D5×SL2(𝔽3), C10×SL2(𝔽3), SL2(𝔽3).11D10
Quotients: C1, C2, C3, C22, C6, D5, A4, C2×C6, D10, C2×A4, C3×D5, C22×A4, C6×D5, D4.A4, D5×A4, C2×D5×A4, SL2(𝔽3).11D10
(1 22 12 32)(2 23 13 33)(3 24 14 34)(4 25 15 35)(5 21 11 31)(6 38 18 28)(7 39 19 29)(8 40 20 30)(9 36 16 26)(10 37 17 27)(41 62 46 67)(42 63 47 68)(43 64 48 69)(44 65 49 70)(45 66 50 61)(51 76 56 71)(52 77 57 72)(53 78 58 73)(54 79 59 74)(55 80 60 75)
(1 7 12 19)(2 8 13 20)(3 9 14 16)(4 10 15 17)(5 6 11 18)(21 28 31 38)(22 29 32 39)(23 30 33 40)(24 26 34 36)(25 27 35 37)(41 52 46 57)(42 53 47 58)(43 54 48 59)(44 55 49 60)(45 56 50 51)(61 71 66 76)(62 72 67 77)(63 73 68 78)(64 74 69 79)(65 75 70 80)
(6 21 28)(7 22 29)(8 23 30)(9 24 26)(10 25 27)(16 34 36)(17 35 37)(18 31 38)(19 32 39)(20 33 40)(51 61 71)(52 62 72)(53 63 73)(54 64 74)(55 65 75)(56 66 76)(57 67 77)(58 68 78)(59 69 79)(60 70 80)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 50 12 45)(2 44 13 49)(3 48 14 43)(4 42 15 47)(5 46 11 41)(6 57 18 52)(7 51 19 56)(8 55 20 60)(9 59 16 54)(10 53 17 58)(21 67 31 62)(22 61 32 66)(23 65 33 70)(24 69 34 64)(25 63 35 68)(26 79 36 74)(27 73 37 78)(28 77 38 72)(29 71 39 76)(30 75 40 80)
G:=sub<Sym(80)| (1,22,12,32)(2,23,13,33)(3,24,14,34)(4,25,15,35)(5,21,11,31)(6,38,18,28)(7,39,19,29)(8,40,20,30)(9,36,16,26)(10,37,17,27)(41,62,46,67)(42,63,47,68)(43,64,48,69)(44,65,49,70)(45,66,50,61)(51,76,56,71)(52,77,57,72)(53,78,58,73)(54,79,59,74)(55,80,60,75), (1,7,12,19)(2,8,13,20)(3,9,14,16)(4,10,15,17)(5,6,11,18)(21,28,31,38)(22,29,32,39)(23,30,33,40)(24,26,34,36)(25,27,35,37)(41,52,46,57)(42,53,47,58)(43,54,48,59)(44,55,49,60)(45,56,50,51)(61,71,66,76)(62,72,67,77)(63,73,68,78)(64,74,69,79)(65,75,70,80), (6,21,28)(7,22,29)(8,23,30)(9,24,26)(10,25,27)(16,34,36)(17,35,37)(18,31,38)(19,32,39)(20,33,40)(51,61,71)(52,62,72)(53,63,73)(54,64,74)(55,65,75)(56,66,76)(57,67,77)(58,68,78)(59,69,79)(60,70,80), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,50,12,45)(2,44,13,49)(3,48,14,43)(4,42,15,47)(5,46,11,41)(6,57,18,52)(7,51,19,56)(8,55,20,60)(9,59,16,54)(10,53,17,58)(21,67,31,62)(22,61,32,66)(23,65,33,70)(24,69,34,64)(25,63,35,68)(26,79,36,74)(27,73,37,78)(28,77,38,72)(29,71,39,76)(30,75,40,80)>;
G:=Group( (1,22,12,32)(2,23,13,33)(3,24,14,34)(4,25,15,35)(5,21,11,31)(6,38,18,28)(7,39,19,29)(8,40,20,30)(9,36,16,26)(10,37,17,27)(41,62,46,67)(42,63,47,68)(43,64,48,69)(44,65,49,70)(45,66,50,61)(51,76,56,71)(52,77,57,72)(53,78,58,73)(54,79,59,74)(55,80,60,75), (1,7,12,19)(2,8,13,20)(3,9,14,16)(4,10,15,17)(5,6,11,18)(21,28,31,38)(22,29,32,39)(23,30,33,40)(24,26,34,36)(25,27,35,37)(41,52,46,57)(42,53,47,58)(43,54,48,59)(44,55,49,60)(45,56,50,51)(61,71,66,76)(62,72,67,77)(63,73,68,78)(64,74,69,79)(65,75,70,80), (6,21,28)(7,22,29)(8,23,30)(9,24,26)(10,25,27)(16,34,36)(17,35,37)(18,31,38)(19,32,39)(20,33,40)(51,61,71)(52,62,72)(53,63,73)(54,64,74)(55,65,75)(56,66,76)(57,67,77)(58,68,78)(59,69,79)(60,70,80), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,50,12,45)(2,44,13,49)(3,48,14,43)(4,42,15,47)(5,46,11,41)(6,57,18,52)(7,51,19,56)(8,55,20,60)(9,59,16,54)(10,53,17,58)(21,67,31,62)(22,61,32,66)(23,65,33,70)(24,69,34,64)(25,63,35,68)(26,79,36,74)(27,73,37,78)(28,77,38,72)(29,71,39,76)(30,75,40,80) );
G=PermutationGroup([[(1,22,12,32),(2,23,13,33),(3,24,14,34),(4,25,15,35),(5,21,11,31),(6,38,18,28),(7,39,19,29),(8,40,20,30),(9,36,16,26),(10,37,17,27),(41,62,46,67),(42,63,47,68),(43,64,48,69),(44,65,49,70),(45,66,50,61),(51,76,56,71),(52,77,57,72),(53,78,58,73),(54,79,59,74),(55,80,60,75)], [(1,7,12,19),(2,8,13,20),(3,9,14,16),(4,10,15,17),(5,6,11,18),(21,28,31,38),(22,29,32,39),(23,30,33,40),(24,26,34,36),(25,27,35,37),(41,52,46,57),(42,53,47,58),(43,54,48,59),(44,55,49,60),(45,56,50,51),(61,71,66,76),(62,72,67,77),(63,73,68,78),(64,74,69,79),(65,75,70,80)], [(6,21,28),(7,22,29),(8,23,30),(9,24,26),(10,25,27),(16,34,36),(17,35,37),(18,31,38),(19,32,39),(20,33,40),(51,61,71),(52,62,72),(53,63,73),(54,64,74),(55,65,75),(56,66,76),(57,67,77),(58,68,78),(59,69,79),(60,70,80)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,50,12,45),(2,44,13,49),(3,48,14,43),(4,42,15,47),(5,46,11,41),(6,57,18,52),(7,51,19,56),(8,55,20,60),(9,59,16,54),(10,53,17,58),(21,67,31,62),(22,61,32,66),(23,65,33,70),(24,69,34,64),(25,63,35,68),(26,79,36,74),(27,73,37,78),(28,77,38,72),(29,71,39,76),(30,75,40,80)]])
47 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 3A | 3B | 4A | 4B | 4C | 4D | 5A | 5B | 6A | 6B | 6C | 6D | 6E | 6F | 10A | ··· | 10F | 12A | 12B | 15A | 15B | 15C | 15D | 20A | 20B | 20C | 20D | 30A | ··· | 30L |
order | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 5 | 5 | 6 | 6 | 6 | 6 | 6 | 6 | 10 | ··· | 10 | 12 | 12 | 15 | 15 | 15 | 15 | 20 | 20 | 20 | 20 | 30 | ··· | 30 |
size | 1 | 1 | 2 | 10 | 30 | 4 | 4 | 6 | 6 | 10 | 30 | 2 | 2 | 4 | 4 | 8 | 8 | 40 | 40 | 2 | ··· | 2 | 40 | 40 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 8 | ··· | 8 |
47 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 6 | 6 |
type | + | + | + | + | + | + | + | + | + | + | - | + | + | ||||||||
image | C1 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | D5 | D10 | C3×D5 | C6×D5 | A4 | C2×A4 | C2×A4 | C2×A4 | D4.A4 | D4.A4 | SL2(𝔽3).11D10 | D5×A4 | C2×D5×A4 |
kernel | SL2(𝔽3).11D10 | Dic5.A4 | D5×SL2(𝔽3) | C10×SL2(𝔽3) | Q8.10D10 | Q8×D5 | Q8⋊2D5 | Q8×C10 | C2×SL2(𝔽3) | SL2(𝔽3) | C2×Q8 | Q8 | C5⋊D4 | Dic5 | D10 | C2×C10 | C5 | C5 | C1 | C22 | C2 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 1 | 1 | 1 | 1 | 1 | 2 | 12 | 2 | 2 |
Matrix representation of SL2(𝔽3).11D10 ►in GL4(𝔽61) generated by
14 | 13 | 0 | 0 |
13 | 47 | 0 | 0 |
0 | 0 | 14 | 13 |
0 | 0 | 13 | 47 |
0 | 60 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 0 | 60 |
0 | 0 | 1 | 0 |
48 | 14 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 48 | 14 |
0 | 0 | 1 | 0 |
9 | 0 | 13 | 0 |
0 | 9 | 0 | 13 |
0 | 0 | 27 | 0 |
0 | 0 | 0 | 27 |
13 | 0 | 38 | 0 |
0 | 13 | 0 | 38 |
18 | 0 | 48 | 0 |
0 | 18 | 0 | 48 |
G:=sub<GL(4,GF(61))| [14,13,0,0,13,47,0,0,0,0,14,13,0,0,13,47],[0,1,0,0,60,0,0,0,0,0,0,1,0,0,60,0],[48,1,0,0,14,0,0,0,0,0,48,1,0,0,14,0],[9,0,0,0,0,9,0,0,13,0,27,0,0,13,0,27],[13,0,18,0,0,13,0,18,38,0,48,0,0,38,0,48] >;
SL2(𝔽3).11D10 in GAP, Magma, Sage, TeX
{\rm SL}_2({\mathbb F}_3)._{11}D_{10}
% in TeX
G:=Group("SL(2,3).11D10");
// GroupNames label
G:=SmallGroup(480,1040);
// by ID
G=gap.SmallGroup(480,1040);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,2,-5,-2,3389,269,584,123,795,382,8069]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=c^3=d^10=1,b^2=e^2=a^2,b*a*b^-1=a^-1,c*a*c^-1=b,a*d=d*a,a*e=e*a,c*b*c^-1=a*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=a^2*d^-1>;
// generators/relations