Extensions 1→N→G→Q→1 with N=D42D5 and Q=S3

Direct product G=N×Q with N=D42D5 and Q=S3

Semidirect products G=N:Q with N=D42D5 and Q=S3
extensionφ:Q→Out NdρLabelID
D42D51S3 = Dic103D6φ: S3/C3C2 ⊆ Out D42D51208+D4:2D5:1S3480,554
D42D52S3 = D12.24D10φ: S3/C3C2 ⊆ Out D42D52408-D4:2D5:2S3480,566
D42D53S3 = C60.16C23φ: S3/C3C2 ⊆ Out D42D52408+D4:2D5:3S3480,568
D42D54S3 = C15⋊2- 1+4φ: S3/C3C2 ⊆ Out D42D52408-D4:2D5:4S3480,1096
D42D55S3 = D1214D10φ: S3/C3C2 ⊆ Out D42D51208+D4:2D5:5S3480,1103
D42D56S3 = D30.C23φ: trivial image1208+D4:2D5:6S3480,1100

Non-split extensions G=N.Q with N=D42D5 and Q=S3
extensionφ:Q→Out NdρLabelID
D42D5.1S3 = C60.8C23φ: S3/C3C2 ⊆ Out D42D52408-D4:2D5.1S3480,560
D42D5.2S3 = Dic10⋊Dic3φ: S3/C3C2 ⊆ Out D42D51208D4:2D5.2S3480,313
D42D5.3S3 = Dic10.Dic3φ: S3/C3C2 ⊆ Out D42D52408D4:2D5.3S3480,1066