metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D4⋊2D5, D4○Dic5, C4.5D10, Dic10⋊3C2, C10.6C23, C20.5C22, C22.1D10, D10.2C22, Dic5.8C22, (C4×D5)⋊2C2, (C5×D4)⋊3C2, C5⋊2(C4○D4), C5⋊D4⋊2C2, (C2×C10).C22, (C2×Dic5)⋊3C2, C2.7(C22×D5), SmallGroup(80,40)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D4⋊2D5
G = < a,b,c,d | a4=b2=c5=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, dbd=a2b, dcd=c-1 >
Character table of D4⋊2D5
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 5A | 5B | 10A | 10B | 10C | 10D | 10E | 10F | 20A | 20B | |
size | 1 | 1 | 2 | 2 | 10 | 2 | 5 | 5 | 10 | 10 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ11 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D10 |
ρ12 | 2 | 2 | -2 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D10 |
ρ13 | 2 | 2 | -2 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 1-√5/2 | -1-√5/2 | -1+√5/2 | 1+√5/2 | 1-√5/2 | 1+√5/2 | orthogonal lifted from D10 |
ρ14 | 2 | 2 | 2 | -2 | 0 | -2 | 0 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | 1+√5/2 | 1-√5/2 | -1-√5/2 | 1-√5/2 | 1+√5/2 | orthogonal lifted from D10 |
ρ15 | 2 | 2 | 2 | -2 | 0 | -2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | 1-√5/2 | 1+√5/2 | -1+√5/2 | 1+√5/2 | 1-√5/2 | orthogonal lifted from D10 |
ρ16 | 2 | 2 | -2 | 2 | 0 | -2 | 0 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 1+√5/2 | -1+√5/2 | -1-√5/2 | 1-√5/2 | 1+√5/2 | 1-√5/2 | orthogonal lifted from D10 |
ρ17 | 2 | -2 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ18 | 2 | -2 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ19 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√5 | -1-√5 | 1+√5 | 1-√5 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
ρ20 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√5 | -1+√5 | 1-√5 | 1+√5 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic faithful, Schur index 2 |
(1 29 9 24)(2 30 10 25)(3 26 6 21)(4 27 7 22)(5 28 8 23)(11 36 16 31)(12 37 17 32)(13 38 18 33)(14 39 19 34)(15 40 20 35)
(1 34)(2 35)(3 31)(4 32)(5 33)(6 36)(7 37)(8 38)(9 39)(10 40)(11 21)(12 22)(13 23)(14 24)(15 25)(16 26)(17 27)(18 28)(19 29)(20 30)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(1 5)(2 4)(7 10)(8 9)(11 16)(12 20)(13 19)(14 18)(15 17)(22 25)(23 24)(27 30)(28 29)(31 36)(32 40)(33 39)(34 38)(35 37)
G:=sub<Sym(40)| (1,29,9,24)(2,30,10,25)(3,26,6,21)(4,27,7,22)(5,28,8,23)(11,36,16,31)(12,37,17,32)(13,38,18,33)(14,39,19,34)(15,40,20,35), (1,34)(2,35)(3,31)(4,32)(5,33)(6,36)(7,37)(8,38)(9,39)(10,40)(11,21)(12,22)(13,23)(14,24)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,5)(2,4)(7,10)(8,9)(11,16)(12,20)(13,19)(14,18)(15,17)(22,25)(23,24)(27,30)(28,29)(31,36)(32,40)(33,39)(34,38)(35,37)>;
G:=Group( (1,29,9,24)(2,30,10,25)(3,26,6,21)(4,27,7,22)(5,28,8,23)(11,36,16,31)(12,37,17,32)(13,38,18,33)(14,39,19,34)(15,40,20,35), (1,34)(2,35)(3,31)(4,32)(5,33)(6,36)(7,37)(8,38)(9,39)(10,40)(11,21)(12,22)(13,23)(14,24)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,5)(2,4)(7,10)(8,9)(11,16)(12,20)(13,19)(14,18)(15,17)(22,25)(23,24)(27,30)(28,29)(31,36)(32,40)(33,39)(34,38)(35,37) );
G=PermutationGroup([[(1,29,9,24),(2,30,10,25),(3,26,6,21),(4,27,7,22),(5,28,8,23),(11,36,16,31),(12,37,17,32),(13,38,18,33),(14,39,19,34),(15,40,20,35)], [(1,34),(2,35),(3,31),(4,32),(5,33),(6,36),(7,37),(8,38),(9,39),(10,40),(11,21),(12,22),(13,23),(14,24),(15,25),(16,26),(17,27),(18,28),(19,29),(20,30)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(1,5),(2,4),(7,10),(8,9),(11,16),(12,20),(13,19),(14,18),(15,17),(22,25),(23,24),(27,30),(28,29),(31,36),(32,40),(33,39),(34,38),(35,37)]])
D4⋊2D5 is a maximal subgroup of
D4⋊F5 D8⋊D5 D8⋊3D5 SD16⋊D5 SD16⋊3D5 D4.F5 D4⋊6D10 D5×C4○D4 D4.10D10 D12⋊D5 D12⋊5D5 C30.C23 Dic3.D10 D4⋊2D15 D4⋊2D25 D20⋊5D5 D20⋊D5 Dic5.D10 D10.4D10 C20.D10 D4.A5
D4⋊2D5 is a maximal quotient of
C23.11D10 Dic5.14D4 C23.D10 Dic5⋊4D4 D10.12D4 Dic5.5D4 C22.D20 Dic5⋊3Q8 Dic5.Q8 C4.Dic10 C4⋊C4⋊7D5 D10⋊2Q8 C4⋊C4⋊D5 D4×Dic5 C23.18D10 C20.17D4 C20⋊2D4 Dic5⋊D4 D12⋊D5 D12⋊5D5 C30.C23 Dic3.D10 D4⋊2D15 D4⋊2D25 D20⋊5D5 D20⋊D5 Dic5.D10 D10.4D10 C20.D10
Matrix representation of D4⋊2D5 ►in GL4(𝔽41) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 9 | 0 |
0 | 0 | 25 | 32 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 32 | 36 |
0 | 0 | 16 | 9 |
0 | 1 | 0 | 0 |
40 | 6 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 21 | 40 |
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,9,25,0,0,0,32],[1,0,0,0,0,1,0,0,0,0,32,16,0,0,36,9],[0,40,0,0,1,6,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,1,21,0,0,0,40] >;
D4⋊2D5 in GAP, Magma, Sage, TeX
D_4\rtimes_2D_5
% in TeX
G:=Group("D4:2D5");
// GroupNames label
G:=SmallGroup(80,40);
// by ID
G=gap.SmallGroup(80,40);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-5,46,182,97,1604]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^5=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations
Export
Subgroup lattice of D4⋊2D5 in TeX
Character table of D4⋊2D5 in TeX