Extensions 1→N→G→Q→1 with N=Q8xD5 and Q=S3

Direct product G=NxQ with N=Q8xD5 and Q=S3
dρLabelID
S3xQ8xD51208-S3xQ8xD5480,1107

Semidirect products G=N:Q with N=Q8xD5 and Q=S3
extensionφ:Q→Out NdρLabelID
(Q8xD5):1S3 = D10.1S4φ: S3/C1S3 ⊆ Out Q8xD5804-(Q8xD5):1S3480,972
(Q8xD5):2S3 = D10.2S4φ: S3/C1S3 ⊆ Out Q8xD5804(Q8xD5):2S3480,973
(Q8xD5):3S3 = D5xGL2(F3)φ: S3/C1S3 ⊆ Out Q8xD5404(Q8xD5):3S3480,974
(Q8xD5):4S3 = D5xQ8:2S3φ: S3/C3C2 ⊆ Out Q8xD51208+(Q8xD5):4S3480,577
(Q8xD5):5S3 = D12.27D10φ: S3/C3C2 ⊆ Out Q8xD52408-(Q8xD5):5S3480,589
(Q8xD5):6S3 = C60.39C23φ: S3/C3C2 ⊆ Out Q8xD52408+(Q8xD5):6S3480,591
(Q8xD5):7S3 = C30.33C24φ: S3/C3C2 ⊆ Out Q8xD52408+(Q8xD5):7S3480,1105
(Q8xD5):8S3 = D12.29D10φ: S3/C3C2 ⊆ Out Q8xD52408-(Q8xD5):8S3480,1106
(Q8xD5):9S3 = D5xQ8:3S3φ: trivial image1208+(Q8xD5):9S3480,1108

Non-split extensions G=N.Q with N=Q8xD5 and Q=S3
extensionφ:Q→Out NdρLabelID
(Q8xD5).1S3 = D5xCSU2(F3)φ: S3/C1S3 ⊆ Out Q8xD5804-(Q8xD5).1S3480,971
(Q8xD5).2S3 = D10.S4φ: S3/C1S3 ⊆ Out Q8xD5408-(Q8xD5).2S3480,962
(Q8xD5).3S3 = D5xC3:Q16φ: S3/C3C2 ⊆ Out Q8xD52408-(Q8xD5).3S3480,583
(Q8xD5).4S3 = Dic10:2Dic3φ: S3/C3C2 ⊆ Out Q8xD51208(Q8xD5).4S3480,314
(Q8xD5).5S3 = Q8xC3:F5φ: S3/C3C2 ⊆ Out Q8xD51208(Q8xD5).5S3480,1069

׿
x
:
Z
F
o
wr
Q
<