Copied to
clipboard

G = Dic102Dic3order 480 = 25·3·5

2nd semidirect product of Dic10 and Dic3 acting via Dic3/C3=C4

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic102Dic3, Q82(C3⋊F5), (C3×Q8)⋊1F5, (Q8×C15)⋊1C4, C5⋊(Q82Dic3), (Q8×D5).4S3, C60.35(C2×C4), (C5×Q8)⋊4Dic3, C33(Q8⋊F5), (C4×D5).29D6, (C6×D5).77D4, C12.11(C2×F5), (C3×D5).6Q16, C60⋊C4.5C2, (C3×Dic10)⋊2C4, C159(Q8⋊C4), C20.3(C2×Dic3), C60.C4.4C2, (C3×Dic5).38D4, (C3×D5).10SD16, D5.3(C3⋊Q16), C6.22(C22⋊F5), D10.34(C3⋊D4), C30.22(C22⋊C4), D5.3(Q82S3), Dic5.7(C3⋊D4), (D5×C12).70C22, C10.7(C6.D4), C2.8(D10.D6), C4.3(C2×C3⋊F5), (C3×Q8×D5).2C2, SmallGroup(480,314)

Series: Derived Chief Lower central Upper central

C1C60 — Dic102Dic3
C1C5C15C30C6×D5D5×C12C60⋊C4 — Dic102Dic3
C15C30C60 — Dic102Dic3
C1C2C4Q8

Generators and relations for Dic102Dic3
 G = < a,b,c,d | a20=c6=1, b2=a10, d2=c3, bab-1=a-1, cac-1=a9, dad-1=a7, bc=cb, dbd-1=a15b, dcd-1=c-1 >

Subgroups: 444 in 84 conjugacy classes, 33 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C5, C6, C6, C8, C2×C4, Q8, Q8, D5, C10, Dic3, C12, C12, C2×C6, C15, C4⋊C4, C2×C8, C2×Q8, Dic5, Dic5, C20, C20, F5, D10, C3⋊C8, C2×Dic3, C2×C12, C3×Q8, C3×Q8, C3×D5, C30, Q8⋊C4, C5⋊C8, Dic10, Dic10, C4×D5, C4×D5, C5×Q8, C2×F5, C2×C3⋊C8, C4⋊Dic3, C6×Q8, C3×Dic5, C3×Dic5, C60, C60, C3⋊F5, C6×D5, D5⋊C8, C4⋊F5, Q8×D5, Q82Dic3, C15⋊C8, C3×Dic10, C3×Dic10, D5×C12, D5×C12, Q8×C15, C2×C3⋊F5, Q8⋊F5, C60.C4, C60⋊C4, C3×Q8×D5, Dic102Dic3
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Dic3, D6, C22⋊C4, SD16, Q16, F5, C2×Dic3, C3⋊D4, Q8⋊C4, C2×F5, Q82S3, C3⋊Q16, C6.D4, C3⋊F5, C22⋊F5, Q82Dic3, C2×C3⋊F5, Q8⋊F5, D10.D6, Dic102Dic3

Smallest permutation representation of Dic102Dic3
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 44 11 54)(2 43 12 53)(3 42 13 52)(4 41 14 51)(5 60 15 50)(6 59 16 49)(7 58 17 48)(8 57 18 47)(9 56 19 46)(10 55 20 45)(21 84 31 94)(22 83 32 93)(23 82 33 92)(24 81 34 91)(25 100 35 90)(26 99 36 89)(27 98 37 88)(28 97 38 87)(29 96 39 86)(30 95 40 85)(61 104 71 114)(62 103 72 113)(63 102 73 112)(64 101 74 111)(65 120 75 110)(66 119 76 109)(67 118 77 108)(68 117 78 107)(69 116 79 106)(70 115 80 105)
(1 103 96)(2 112 97 10 104 85)(3 101 98 19 105 94)(4 110 99 8 106 83)(5 119 100 17 107 92)(6 108 81)(7 117 82 15 109 90)(9 115 84 13 111 88)(11 113 86)(12 102 87 20 114 95)(14 120 89 18 116 93)(16 118 91)(21 42 74 37 46 70)(22 51 75 26 47 79)(23 60 76 35 48 68)(24 49 77)(25 58 78 33 50 66)(27 56 80 31 52 64)(28 45 61 40 53 73)(29 54 62)(30 43 63 38 55 71)(32 41 65 36 57 69)(34 59 67)(39 44 72)
(2 4 10 8)(3 7 19 15)(5 13 17 9)(6 16)(12 14 20 18)(21 63 37 71)(22 66 26 78)(23 69 35 65)(24 72)(25 75 33 79)(27 61 31 73)(28 64 40 80)(29 67)(30 70 38 74)(32 76 36 68)(34 62)(39 77)(41 60 57 48)(42 43 46 55)(44 49)(45 52 53 56)(47 58 51 50)(54 59)(81 118)(82 101 90 105)(83 104 99 112)(84 107 88 119)(85 110 97 106)(86 113)(87 116 95 120)(89 102 93 114)(91 108)(92 111 100 115)(94 117 98 109)(96 103)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,44,11,54)(2,43,12,53)(3,42,13,52)(4,41,14,51)(5,60,15,50)(6,59,16,49)(7,58,17,48)(8,57,18,47)(9,56,19,46)(10,55,20,45)(21,84,31,94)(22,83,32,93)(23,82,33,92)(24,81,34,91)(25,100,35,90)(26,99,36,89)(27,98,37,88)(28,97,38,87)(29,96,39,86)(30,95,40,85)(61,104,71,114)(62,103,72,113)(63,102,73,112)(64,101,74,111)(65,120,75,110)(66,119,76,109)(67,118,77,108)(68,117,78,107)(69,116,79,106)(70,115,80,105), (1,103,96)(2,112,97,10,104,85)(3,101,98,19,105,94)(4,110,99,8,106,83)(5,119,100,17,107,92)(6,108,81)(7,117,82,15,109,90)(9,115,84,13,111,88)(11,113,86)(12,102,87,20,114,95)(14,120,89,18,116,93)(16,118,91)(21,42,74,37,46,70)(22,51,75,26,47,79)(23,60,76,35,48,68)(24,49,77)(25,58,78,33,50,66)(27,56,80,31,52,64)(28,45,61,40,53,73)(29,54,62)(30,43,63,38,55,71)(32,41,65,36,57,69)(34,59,67)(39,44,72), (2,4,10,8)(3,7,19,15)(5,13,17,9)(6,16)(12,14,20,18)(21,63,37,71)(22,66,26,78)(23,69,35,65)(24,72)(25,75,33,79)(27,61,31,73)(28,64,40,80)(29,67)(30,70,38,74)(32,76,36,68)(34,62)(39,77)(41,60,57,48)(42,43,46,55)(44,49)(45,52,53,56)(47,58,51,50)(54,59)(81,118)(82,101,90,105)(83,104,99,112)(84,107,88,119)(85,110,97,106)(86,113)(87,116,95,120)(89,102,93,114)(91,108)(92,111,100,115)(94,117,98,109)(96,103)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,44,11,54)(2,43,12,53)(3,42,13,52)(4,41,14,51)(5,60,15,50)(6,59,16,49)(7,58,17,48)(8,57,18,47)(9,56,19,46)(10,55,20,45)(21,84,31,94)(22,83,32,93)(23,82,33,92)(24,81,34,91)(25,100,35,90)(26,99,36,89)(27,98,37,88)(28,97,38,87)(29,96,39,86)(30,95,40,85)(61,104,71,114)(62,103,72,113)(63,102,73,112)(64,101,74,111)(65,120,75,110)(66,119,76,109)(67,118,77,108)(68,117,78,107)(69,116,79,106)(70,115,80,105), (1,103,96)(2,112,97,10,104,85)(3,101,98,19,105,94)(4,110,99,8,106,83)(5,119,100,17,107,92)(6,108,81)(7,117,82,15,109,90)(9,115,84,13,111,88)(11,113,86)(12,102,87,20,114,95)(14,120,89,18,116,93)(16,118,91)(21,42,74,37,46,70)(22,51,75,26,47,79)(23,60,76,35,48,68)(24,49,77)(25,58,78,33,50,66)(27,56,80,31,52,64)(28,45,61,40,53,73)(29,54,62)(30,43,63,38,55,71)(32,41,65,36,57,69)(34,59,67)(39,44,72), (2,4,10,8)(3,7,19,15)(5,13,17,9)(6,16)(12,14,20,18)(21,63,37,71)(22,66,26,78)(23,69,35,65)(24,72)(25,75,33,79)(27,61,31,73)(28,64,40,80)(29,67)(30,70,38,74)(32,76,36,68)(34,62)(39,77)(41,60,57,48)(42,43,46,55)(44,49)(45,52,53,56)(47,58,51,50)(54,59)(81,118)(82,101,90,105)(83,104,99,112)(84,107,88,119)(85,110,97,106)(86,113)(87,116,95,120)(89,102,93,114)(91,108)(92,111,100,115)(94,117,98,109)(96,103) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,44,11,54),(2,43,12,53),(3,42,13,52),(4,41,14,51),(5,60,15,50),(6,59,16,49),(7,58,17,48),(8,57,18,47),(9,56,19,46),(10,55,20,45),(21,84,31,94),(22,83,32,93),(23,82,33,92),(24,81,34,91),(25,100,35,90),(26,99,36,89),(27,98,37,88),(28,97,38,87),(29,96,39,86),(30,95,40,85),(61,104,71,114),(62,103,72,113),(63,102,73,112),(64,101,74,111),(65,120,75,110),(66,119,76,109),(67,118,77,108),(68,117,78,107),(69,116,79,106),(70,115,80,105)], [(1,103,96),(2,112,97,10,104,85),(3,101,98,19,105,94),(4,110,99,8,106,83),(5,119,100,17,107,92),(6,108,81),(7,117,82,15,109,90),(9,115,84,13,111,88),(11,113,86),(12,102,87,20,114,95),(14,120,89,18,116,93),(16,118,91),(21,42,74,37,46,70),(22,51,75,26,47,79),(23,60,76,35,48,68),(24,49,77),(25,58,78,33,50,66),(27,56,80,31,52,64),(28,45,61,40,53,73),(29,54,62),(30,43,63,38,55,71),(32,41,65,36,57,69),(34,59,67),(39,44,72)], [(2,4,10,8),(3,7,19,15),(5,13,17,9),(6,16),(12,14,20,18),(21,63,37,71),(22,66,26,78),(23,69,35,65),(24,72),(25,75,33,79),(27,61,31,73),(28,64,40,80),(29,67),(30,70,38,74),(32,76,36,68),(34,62),(39,77),(41,60,57,48),(42,43,46,55),(44,49),(45,52,53,56),(47,58,51,50),(54,59),(81,118),(82,101,90,105),(83,104,99,112),(84,107,88,119),(85,110,97,106),(86,113),(87,116,95,120),(89,102,93,114),(91,108),(92,111,100,115),(94,117,98,109),(96,103)]])

39 conjugacy classes

class 1 2A2B2C 3 4A4B4C4D4E4F 5 6A6B6C8A8B8C8D 10 12A12B12C12D12E12F15A15B20A20B20C30A30B60A···60F
order1222344444456668888101212121212121515202020303060···60
size11552241020606042101030303030444420202044888448···8

39 irreducible representations

dim11111122222222224444444488
type+++++++-+--+++-+-
imageC1C2C2C2C4C4S3D4D4Dic3D6Dic3SD16Q16C3⋊D4C3⋊D4F5C2×F5Q82S3C3⋊Q16C3⋊F5C22⋊F5C2×C3⋊F5D10.D6Q8⋊F5Dic102Dic3
kernelDic102Dic3C60.C4C60⋊C4C3×Q8×D5C3×Dic10Q8×C15Q8×D5C3×Dic5C6×D5Dic10C4×D5C5×Q8C3×D5C3×D5Dic5D10C3×Q8C12D5D5Q8C6C4C2C3C1
# reps11112211111122221111222412

Matrix representation of Dic102Dic3 in GL6(𝔽241)

24030000
16010000
000100
000010
000001
00240240240240
,
01840000
14800000
00000240
00002400
00024000
00240000
,
24000000
02400000
0012120126
000229114229
002291142290
0012601212
,
17700000
118640000
000100
000001
001000
000010

G:=sub<GL(6,GF(241))| [240,160,0,0,0,0,3,1,0,0,0,0,0,0,0,0,0,240,0,0,1,0,0,240,0,0,0,1,0,240,0,0,0,0,1,240],[0,148,0,0,0,0,184,0,0,0,0,0,0,0,0,0,0,240,0,0,0,0,240,0,0,0,0,240,0,0,0,0,240,0,0,0],[240,0,0,0,0,0,0,240,0,0,0,0,0,0,12,0,229,126,0,0,12,229,114,0,0,0,0,114,229,12,0,0,126,229,0,12],[177,118,0,0,0,0,0,64,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0] >;

Dic102Dic3 in GAP, Magma, Sage, TeX

{\rm Dic}_{10}\rtimes_2{\rm Dic}_3
% in TeX

G:=Group("Dic10:2Dic3");
// GroupNames label

G:=SmallGroup(480,314);
// by ID

G=gap.SmallGroup(480,314);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,28,141,120,675,346,80,2693,14118,4724]);
// Polycyclic

G:=Group<a,b,c,d|a^20=c^6=1,b^2=a^10,d^2=c^3,b*a*b^-1=a^-1,c*a*c^-1=a^9,d*a*d^-1=a^7,b*c=c*b,d*b*d^-1=a^15*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽