Extensions 1→N→G→Q→1 with N=C3×D4.D5 and Q=C2

Direct product G=N×Q with N=C3×D4.D5 and Q=C2
dρLabelID
C6×D4.D5240C6xD4.D5480,726

Semidirect products G=N:Q with N=C3×D4.D5 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×D4.D5)⋊1C2 = S3×D4.D5φ: C2/C1C2 ⊆ Out C3×D4.D51208-(C3xD4.D5):1C2480,561
(C3×D4.D5)⋊2C2 = C60.10C23φ: C2/C1C2 ⊆ Out C3×D4.D52408-(C3xD4.D5):2C2480,562
(C3×D4.D5)⋊3C2 = Dic10⋊D6φ: C2/C1C2 ⊆ Out C3×D4.D51208+(C3xD4.D5):3C2480,563
(C3×D4.D5)⋊4C2 = D30.9D4φ: C2/C1C2 ⊆ Out C3×D4.D52408-(C3xD4.D5):4C2480,564
(C3×D4.D5)⋊5C2 = C60.19C23φ: C2/C1C2 ⊆ Out C3×D4.D52408+(C3xD4.D5):5C2480,571
(C3×D4.D5)⋊6C2 = D12.9D10φ: C2/C1C2 ⊆ Out C3×D4.D51208+(C3xD4.D5):6C2480,572
(C3×D4.D5)⋊7C2 = D30.11D4φ: C2/C1C2 ⊆ Out C3×D4.D52408-(C3xD4.D5):7C2480,575
(C3×D4.D5)⋊8C2 = D125D10φ: C2/C1C2 ⊆ Out C3×D4.D51208+(C3xD4.D5):8C2480,576
(C3×D4.D5)⋊9C2 = C3×D8⋊D5φ: C2/C1C2 ⊆ Out C3×D4.D51204(C3xD4.D5):9C2480,704
(C3×D4.D5)⋊10C2 = C3×D83D5φ: C2/C1C2 ⊆ Out C3×D4.D52404(C3xD4.D5):10C2480,705
(C3×D4.D5)⋊11C2 = C3×D5×SD16φ: C2/C1C2 ⊆ Out C3×D4.D51204(C3xD4.D5):11C2480,706
(C3×D4.D5)⋊12C2 = C3×SD16⋊D5φ: C2/C1C2 ⊆ Out C3×D4.D52404(C3xD4.D5):12C2480,708
(C3×D4.D5)⋊13C2 = C3×D4.D10φ: C2/C1C2 ⊆ Out C3×D4.D51204(C3xD4.D5):13C2480,725
(C3×D4.D5)⋊14C2 = C3×D4.9D10φ: C2/C1C2 ⊆ Out C3×D4.D52404(C3xD4.D5):14C2480,744
(C3×D4.D5)⋊15C2 = C3×D4.8D10φ: trivial image2404(C3xD4.D5):15C2480,743


׿
×
𝔽