Copied to
clipboard

G = C3×D4.D5order 240 = 24·3·5

Direct product of C3 and D4.D5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C3×D4.D5, C30.41D4, C1511SD16, Dic102C6, C12.37D10, C60.37C22, D4.(C3×D5), C52C82C6, C4.2(C6×D5), C52(C3×SD16), C20.2(C2×C6), (C5×D4).1C6, (C3×D4).2D5, C10.8(C3×D4), (D4×C15).2C2, (C3×Dic10)⋊8C2, C6.24(C5⋊D4), (C3×C52C8)⋊9C2, C2.5(C3×C5⋊D4), SmallGroup(240,45)

Series: Derived Chief Lower central Upper central

C1C20 — C3×D4.D5
C1C5C10C20C60C3×Dic10 — C3×D4.D5
C5C10C20 — C3×D4.D5
C1C6C12C3×D4

Generators and relations for C3×D4.D5
 G = < a,b,c,d,e | a3=b4=c2=d5=1, e2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=ebe-1=b-1, bd=db, cd=dc, ece-1=bc, ede-1=d-1 >

4C2
2C22
10C4
4C6
4C10
5Q8
5C8
2C2×C6
10C12
2C2×C10
2Dic5
4C30
5SD16
5C3×Q8
5C24
2C2×C30
2C3×Dic5
5C3×SD16

Smallest permutation representation of C3×D4.D5
On 120 points
Generators in S120
(1 41 21)(2 42 22)(3 43 23)(4 44 24)(5 45 25)(6 46 26)(7 47 27)(8 48 28)(9 49 29)(10 50 30)(11 51 31)(12 52 32)(13 53 33)(14 54 34)(15 55 35)(16 56 36)(17 57 37)(18 58 38)(19 59 39)(20 60 40)(61 101 81)(62 102 82)(63 103 83)(64 104 84)(65 105 85)(66 106 86)(67 107 87)(68 108 88)(69 109 89)(70 110 90)(71 111 91)(72 112 92)(73 113 93)(74 114 94)(75 115 95)(76 116 96)(77 117 97)(78 118 98)(79 119 99)(80 120 100)
(1 16 6 11)(2 17 7 12)(3 18 8 13)(4 19 9 14)(5 20 10 15)(21 36 26 31)(22 37 27 32)(23 38 28 33)(24 39 29 34)(25 40 30 35)(41 56 46 51)(42 57 47 52)(43 58 48 53)(44 59 49 54)(45 60 50 55)(61 71 66 76)(62 72 67 77)(63 73 68 78)(64 74 69 79)(65 75 70 80)(81 91 86 96)(82 92 87 97)(83 93 88 98)(84 94 89 99)(85 95 90 100)(101 111 106 116)(102 112 107 117)(103 113 108 118)(104 114 109 119)(105 115 110 120)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(61 66)(62 67)(63 68)(64 69)(65 70)(81 86)(82 87)(83 88)(84 89)(85 90)(101 106)(102 107)(103 108)(104 109)(105 110)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)
(1 68 6 63)(2 67 7 62)(3 66 8 61)(4 70 9 65)(5 69 10 64)(11 78 16 73)(12 77 17 72)(13 76 18 71)(14 80 19 75)(15 79 20 74)(21 88 26 83)(22 87 27 82)(23 86 28 81)(24 90 29 85)(25 89 30 84)(31 98 36 93)(32 97 37 92)(33 96 38 91)(34 100 39 95)(35 99 40 94)(41 108 46 103)(42 107 47 102)(43 106 48 101)(44 110 49 105)(45 109 50 104)(51 118 56 113)(52 117 57 112)(53 116 58 111)(54 120 59 115)(55 119 60 114)

G:=sub<Sym(120)| (1,41,21)(2,42,22)(3,43,23)(4,44,24)(5,45,25)(6,46,26)(7,47,27)(8,48,28)(9,49,29)(10,50,30)(11,51,31)(12,52,32)(13,53,33)(14,54,34)(15,55,35)(16,56,36)(17,57,37)(18,58,38)(19,59,39)(20,60,40)(61,101,81)(62,102,82)(63,103,83)(64,104,84)(65,105,85)(66,106,86)(67,107,87)(68,108,88)(69,109,89)(70,110,90)(71,111,91)(72,112,92)(73,113,93)(74,114,94)(75,115,95)(76,116,96)(77,117,97)(78,118,98)(79,119,99)(80,120,100), (1,16,6,11)(2,17,7,12)(3,18,8,13)(4,19,9,14)(5,20,10,15)(21,36,26,31)(22,37,27,32)(23,38,28,33)(24,39,29,34)(25,40,30,35)(41,56,46,51)(42,57,47,52)(43,58,48,53)(44,59,49,54)(45,60,50,55)(61,71,66,76)(62,72,67,77)(63,73,68,78)(64,74,69,79)(65,75,70,80)(81,91,86,96)(82,92,87,97)(83,93,88,98)(84,94,89,99)(85,95,90,100)(101,111,106,116)(102,112,107,117)(103,113,108,118)(104,114,109,119)(105,115,110,120), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,66)(62,67)(63,68)(64,69)(65,70)(81,86)(82,87)(83,88)(84,89)(85,90)(101,106)(102,107)(103,108)(104,109)(105,110), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (1,68,6,63)(2,67,7,62)(3,66,8,61)(4,70,9,65)(5,69,10,64)(11,78,16,73)(12,77,17,72)(13,76,18,71)(14,80,19,75)(15,79,20,74)(21,88,26,83)(22,87,27,82)(23,86,28,81)(24,90,29,85)(25,89,30,84)(31,98,36,93)(32,97,37,92)(33,96,38,91)(34,100,39,95)(35,99,40,94)(41,108,46,103)(42,107,47,102)(43,106,48,101)(44,110,49,105)(45,109,50,104)(51,118,56,113)(52,117,57,112)(53,116,58,111)(54,120,59,115)(55,119,60,114)>;

G:=Group( (1,41,21)(2,42,22)(3,43,23)(4,44,24)(5,45,25)(6,46,26)(7,47,27)(8,48,28)(9,49,29)(10,50,30)(11,51,31)(12,52,32)(13,53,33)(14,54,34)(15,55,35)(16,56,36)(17,57,37)(18,58,38)(19,59,39)(20,60,40)(61,101,81)(62,102,82)(63,103,83)(64,104,84)(65,105,85)(66,106,86)(67,107,87)(68,108,88)(69,109,89)(70,110,90)(71,111,91)(72,112,92)(73,113,93)(74,114,94)(75,115,95)(76,116,96)(77,117,97)(78,118,98)(79,119,99)(80,120,100), (1,16,6,11)(2,17,7,12)(3,18,8,13)(4,19,9,14)(5,20,10,15)(21,36,26,31)(22,37,27,32)(23,38,28,33)(24,39,29,34)(25,40,30,35)(41,56,46,51)(42,57,47,52)(43,58,48,53)(44,59,49,54)(45,60,50,55)(61,71,66,76)(62,72,67,77)(63,73,68,78)(64,74,69,79)(65,75,70,80)(81,91,86,96)(82,92,87,97)(83,93,88,98)(84,94,89,99)(85,95,90,100)(101,111,106,116)(102,112,107,117)(103,113,108,118)(104,114,109,119)(105,115,110,120), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,66)(62,67)(63,68)(64,69)(65,70)(81,86)(82,87)(83,88)(84,89)(85,90)(101,106)(102,107)(103,108)(104,109)(105,110), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (1,68,6,63)(2,67,7,62)(3,66,8,61)(4,70,9,65)(5,69,10,64)(11,78,16,73)(12,77,17,72)(13,76,18,71)(14,80,19,75)(15,79,20,74)(21,88,26,83)(22,87,27,82)(23,86,28,81)(24,90,29,85)(25,89,30,84)(31,98,36,93)(32,97,37,92)(33,96,38,91)(34,100,39,95)(35,99,40,94)(41,108,46,103)(42,107,47,102)(43,106,48,101)(44,110,49,105)(45,109,50,104)(51,118,56,113)(52,117,57,112)(53,116,58,111)(54,120,59,115)(55,119,60,114) );

G=PermutationGroup([[(1,41,21),(2,42,22),(3,43,23),(4,44,24),(5,45,25),(6,46,26),(7,47,27),(8,48,28),(9,49,29),(10,50,30),(11,51,31),(12,52,32),(13,53,33),(14,54,34),(15,55,35),(16,56,36),(17,57,37),(18,58,38),(19,59,39),(20,60,40),(61,101,81),(62,102,82),(63,103,83),(64,104,84),(65,105,85),(66,106,86),(67,107,87),(68,108,88),(69,109,89),(70,110,90),(71,111,91),(72,112,92),(73,113,93),(74,114,94),(75,115,95),(76,116,96),(77,117,97),(78,118,98),(79,119,99),(80,120,100)], [(1,16,6,11),(2,17,7,12),(3,18,8,13),(4,19,9,14),(5,20,10,15),(21,36,26,31),(22,37,27,32),(23,38,28,33),(24,39,29,34),(25,40,30,35),(41,56,46,51),(42,57,47,52),(43,58,48,53),(44,59,49,54),(45,60,50,55),(61,71,66,76),(62,72,67,77),(63,73,68,78),(64,74,69,79),(65,75,70,80),(81,91,86,96),(82,92,87,97),(83,93,88,98),(84,94,89,99),(85,95,90,100),(101,111,106,116),(102,112,107,117),(103,113,108,118),(104,114,109,119),(105,115,110,120)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(61,66),(62,67),(63,68),(64,69),(65,70),(81,86),(82,87),(83,88),(84,89),(85,90),(101,106),(102,107),(103,108),(104,109),(105,110)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120)], [(1,68,6,63),(2,67,7,62),(3,66,8,61),(4,70,9,65),(5,69,10,64),(11,78,16,73),(12,77,17,72),(13,76,18,71),(14,80,19,75),(15,79,20,74),(21,88,26,83),(22,87,27,82),(23,86,28,81),(24,90,29,85),(25,89,30,84),(31,98,36,93),(32,97,37,92),(33,96,38,91),(34,100,39,95),(35,99,40,94),(41,108,46,103),(42,107,47,102),(43,106,48,101),(44,110,49,105),(45,109,50,104),(51,118,56,113),(52,117,57,112),(53,116,58,111),(54,120,59,115),(55,119,60,114)]])

C3×D4.D5 is a maximal subgroup of
C60.10C23  Dic10⋊D6  D30.9D4  C60.19C23  D12.9D10  D30.11D4  D125D10  C3×D5×SD16

51 conjugacy classes

class 1 2A2B3A3B4A4B5A5B6A6B6C6D8A8B10A10B10C10D10E10F12A12B12C12D15A15B15C15D20A20B24A24B24C24D30A30B30C30D30E···30L60A60B60C60D
order12233445566668810101010101012121212151515152020242424243030303030···3060606060
size1141122022114410102244442220202222441010101022224···44444

51 irreducible representations

dim11111111222222222244
type+++++++-
imageC1C2C2C2C3C6C6C6D4D5SD16D10C3×D4C3×D5C5⋊D4C3×SD16C6×D5C3×C5⋊D4D4.D5C3×D4.D5
kernelC3×D4.D5C3×C52C8C3×Dic10D4×C15D4.D5C52C8Dic10C5×D4C30C3×D4C15C12C10D4C6C5C4C2C3C1
# reps11112222122224444824

Matrix representation of C3×D4.D5 in GL4(𝔽241) generated by

1000
0100
002250
000225
,
0100
240000
002400
000240
,
0100
1000
0024085
0001
,
1000
0100
0091177
00098
,
2221900
191900
0023156
00182218
G:=sub<GL(4,GF(241))| [1,0,0,0,0,1,0,0,0,0,225,0,0,0,0,225],[0,240,0,0,1,0,0,0,0,0,240,0,0,0,0,240],[0,1,0,0,1,0,0,0,0,0,240,0,0,0,85,1],[1,0,0,0,0,1,0,0,0,0,91,0,0,0,177,98],[222,19,0,0,19,19,0,0,0,0,23,182,0,0,156,218] >;

C3×D4.D5 in GAP, Magma, Sage, TeX

C_3\times D_4.D_5
% in TeX

G:=Group("C3xD4.D5");
// GroupNames label

G:=SmallGroup(240,45);
// by ID

G=gap.SmallGroup(240,45);
# by ID

G:=PCGroup([6,-2,-2,-3,-2,-2,-5,144,169,867,441,69,6917]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^4=c^2=d^5=1,e^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=e*b*e^-1=b^-1,b*d=d*b,c*d=d*c,e*c*e^-1=b*c,e*d*e^-1=d^-1>;
// generators/relations

Export

Subgroup lattice of C3×D4.D5 in TeX

׿
×
𝔽