Extensions 1→N→G→Q→1 with N=C6×C5⋊D4 and Q=C2

Direct product G=N×Q with N=C6×C5⋊D4 and Q=C2
dρLabelID
C2×C6×C5⋊D4240C2xC6xC5:D4480,1149

Semidirect products G=N:Q with N=C6×C5⋊D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6×C5⋊D4)⋊1C2 = D306D4φ: C2/C1C2 ⊆ Out C6×C5⋊D4240(C6xC5:D4):1C2480,609
(C6×C5⋊D4)⋊2C2 = (C6×D5)⋊D4φ: C2/C1C2 ⊆ Out C6×C5⋊D4240(C6xC5:D4):2C2480,625
(C6×C5⋊D4)⋊3C2 = Dic153D4φ: C2/C1C2 ⊆ Out C6×C5⋊D4240(C6xC5:D4):3C2480,626
(C6×C5⋊D4)⋊4C2 = (S3×C10)⋊D4φ: C2/C1C2 ⊆ Out C6×C5⋊D4240(C6xC5:D4):4C2480,641
(C6×C5⋊D4)⋊5C2 = Dic155D4φ: C2/C1C2 ⊆ Out C6×C5⋊D4240(C6xC5:D4):5C2480,643
(C6×C5⋊D4)⋊6C2 = C15⋊C22≀C2φ: C2/C1C2 ⊆ Out C6×C5⋊D4120(C6xC5:D4):6C2480,644
(C6×C5⋊D4)⋊7C2 = (C2×C6)⋊D20φ: C2/C1C2 ⊆ Out C6×C5⋊D4240(C6xC5:D4):7C2480,645
(C6×C5⋊D4)⋊8C2 = Dic1518D4φ: C2/C1C2 ⊆ Out C6×C5⋊D4240(C6xC5:D4):8C2480,647
(C6×C5⋊D4)⋊9C2 = D3018D4φ: C2/C1C2 ⊆ Out C6×C5⋊D4120(C6xC5:D4):9C2480,648
(C6×C5⋊D4)⋊10C2 = D308D4φ: C2/C1C2 ⊆ Out C6×C5⋊D4120(C6xC5:D4):10C2480,653
(C6×C5⋊D4)⋊11C2 = C2×Dic5.D6φ: C2/C1C2 ⊆ Out C6×C5⋊D4240(C6xC5:D4):11C2480,1113
(C6×C5⋊D4)⋊12C2 = C2×C30.C23φ: C2/C1C2 ⊆ Out C6×C5⋊D4240(C6xC5:D4):12C2480,1114
(C6×C5⋊D4)⋊13C2 = C2×S3×C5⋊D4φ: C2/C1C2 ⊆ Out C6×C5⋊D4120(C6xC5:D4):13C2480,1123
(C6×C5⋊D4)⋊14C2 = C2×D10⋊D6φ: C2/C1C2 ⊆ Out C6×C5⋊D4120(C6xC5:D4):14C2480,1124
(C6×C5⋊D4)⋊15C2 = C15⋊2+ 1+4φ: C2/C1C2 ⊆ Out C6×C5⋊D41204(C6xC5:D4):15C2480,1125
(C6×C5⋊D4)⋊16C2 = C3×C22⋊D20φ: C2/C1C2 ⊆ Out C6×C5⋊D4120(C6xC5:D4):16C2480,675
(C6×C5⋊D4)⋊17C2 = C3×D10⋊D4φ: C2/C1C2 ⊆ Out C6×C5⋊D4240(C6xC5:D4):17C2480,677
(C6×C5⋊D4)⋊18C2 = C3×C207D4φ: C2/C1C2 ⊆ Out C6×C5⋊D4240(C6xC5:D4):18C2480,723
(C6×C5⋊D4)⋊19C2 = C3×C23⋊D10φ: C2/C1C2 ⊆ Out C6×C5⋊D4120(C6xC5:D4):19C2480,730
(C6×C5⋊D4)⋊20C2 = C3×C202D4φ: C2/C1C2 ⊆ Out C6×C5⋊D4240(C6xC5:D4):20C2480,731
(C6×C5⋊D4)⋊21C2 = C3×Dic5⋊D4φ: C2/C1C2 ⊆ Out C6×C5⋊D4240(C6xC5:D4):21C2480,732
(C6×C5⋊D4)⋊22C2 = C3×C20⋊D4φ: C2/C1C2 ⊆ Out C6×C5⋊D4240(C6xC5:D4):22C2480,733
(C6×C5⋊D4)⋊23C2 = C3×C242D5φ: C2/C1C2 ⊆ Out C6×C5⋊D4120(C6xC5:D4):23C2480,746
(C6×C5⋊D4)⋊24C2 = C6×D4×D5φ: C2/C1C2 ⊆ Out C6×C5⋊D4120(C6xC5:D4):24C2480,1139
(C6×C5⋊D4)⋊25C2 = C6×D42D5φ: C2/C1C2 ⊆ Out C6×C5⋊D4240(C6xC5:D4):25C2480,1140
(C6×C5⋊D4)⋊26C2 = C3×D46D10φ: C2/C1C2 ⊆ Out C6×C5⋊D41204(C6xC5:D4):26C2480,1141
(C6×C5⋊D4)⋊27C2 = C6×C4○D20φ: trivial image240(C6xC5:D4):27C2480,1138

Non-split extensions G=N.Q with N=C6×C5⋊D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C6×C5⋊D4).1C2 = (C2×C6).D20φ: C2/C1C2 ⊆ Out C6×C5⋊D41204(C6xC5:D4).1C2480,71
(C6×C5⋊D4).2C2 = C6.(D4×D5)φ: C2/C1C2 ⊆ Out C6×C5⋊D4240(C6xC5:D4).2C2480,610
(C6×C5⋊D4).3C2 = (C2×C30).D4φ: C2/C1C2 ⊆ Out C6×C5⋊D4240(C6xC5:D4).3C2480,612
(C6×C5⋊D4).4C2 = C6.(C2×D20)φ: C2/C1C2 ⊆ Out C6×C5⋊D4240(C6xC5:D4).4C2480,613
(C6×C5⋊D4).5C2 = C23.17(S3×D5)φ: C2/C1C2 ⊆ Out C6×C5⋊D4240(C6xC5:D4).5C2480,624
(C6×C5⋊D4).6C2 = Dic3×C5⋊D4φ: C2/C1C2 ⊆ Out C6×C5⋊D4240(C6xC5:D4).6C2480,629
(C6×C5⋊D4).7C2 = Dic1516D4φ: C2/C1C2 ⊆ Out C6×C5⋊D4240(C6xC5:D4).7C2480,635
(C6×C5⋊D4).8C2 = C3×C23.1D10φ: C2/C1C2 ⊆ Out C6×C5⋊D41204(C6xC5:D4).8C2480,84
(C6×C5⋊D4).9C2 = C3×Dic54D4φ: C2/C1C2 ⊆ Out C6×C5⋊D4240(C6xC5:D4).9C2480,674
(C6×C5⋊D4).10C2 = C3×D10.12D4φ: C2/C1C2 ⊆ Out C6×C5⋊D4240(C6xC5:D4).10C2480,676
(C6×C5⋊D4).11C2 = C3×Dic5.5D4φ: C2/C1C2 ⊆ Out C6×C5⋊D4240(C6xC5:D4).11C2480,678
(C6×C5⋊D4).12C2 = C3×C22.D20φ: C2/C1C2 ⊆ Out C6×C5⋊D4240(C6xC5:D4).12C2480,679
(C6×C5⋊D4).13C2 = C3×C23.23D10φ: C2/C1C2 ⊆ Out C6×C5⋊D4240(C6xC5:D4).13C2480,722
(C6×C5⋊D4).14C2 = C3⋊(C23⋊F5)φ: C2/C1C2 ⊆ Out C6×C5⋊D41204(C6xC5:D4).14C2480,316
(C6×C5⋊D4).15C2 = C5⋊(C12.D4)φ: C2/C1C2 ⊆ Out C6×C5⋊D41204(C6xC5:D4).15C2480,318
(C6×C5⋊D4).16C2 = C3×C23⋊F5φ: C2/C1C2 ⊆ Out C6×C5⋊D41204(C6xC5:D4).16C2480,291
(C6×C5⋊D4).17C2 = C3×C23.F5φ: C2/C1C2 ⊆ Out C6×C5⋊D41204(C6xC5:D4).17C2480,293
(C6×C5⋊D4).18C2 = C12×C5⋊D4φ: trivial image240(C6xC5:D4).18C2480,721

׿
×
𝔽