Copied to
clipboard

G = C5⋊(C12.D4)  order 480 = 25·3·5

The semidirect product of C5 and C12.D4 acting via C12.D4/C22×C6=C4

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C5⋊(C12.D4), C32(C23.F5), C23.2(C3⋊F5), (C22×C6).2F5, C155(C4.D4), (C22×C30).5C4, C158M4(2)⋊5C2, (C2×Dic5).74D6, (C3×Dic5).39D4, C6.26(C22⋊F5), C30.26(C22⋊C4), Dic5.8(C3⋊D4), (C22×D5).2Dic3, (C22×C10).7Dic3, C10.11(C6.D4), (C6×Dic5).169C22, C2.11(D10.D6), (D5×C2×C6).3C4, C22.5(C2×C3⋊F5), (C2×C5⋊D4).8S3, (C2×C6).42(C2×F5), (C2×C30).36(C2×C4), (C6×C5⋊D4).15C2, (C2×C10).12(C2×Dic3), SmallGroup(480,318)

Series: Derived Chief Lower central Upper central

C1C2×C30 — C5⋊(C12.D4)
C1C5C15C30C3×Dic5C6×Dic5C158M4(2) — C5⋊(C12.D4)
C15C30C2×C30 — C5⋊(C12.D4)
C1C2C22C23

Generators and relations for C5⋊(C12.D4)
 G = < a,b,c,d | a5=b12=1, c4=b6, d2=b9, bab-1=a-1, cac-1=dad-1=a2, cbc-1=b-1, dbd-1=b5, dcd-1=b3c3 >

Subgroups: 460 in 92 conjugacy classes, 29 normal (23 characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, C6, C6, C8, C2×C4, D4, C23, C23, D5, C10, C10, C12, C2×C6, C2×C6, C15, M4(2), C2×D4, Dic5, D10, C2×C10, C2×C10, C3⋊C8, C2×C12, C3×D4, C22×C6, C22×C6, C3×D5, C30, C30, C4.D4, C5⋊C8, C2×Dic5, C5⋊D4, C22×D5, C22×C10, C4.Dic3, C6×D4, C3×Dic5, C6×D5, C2×C30, C2×C30, C22.F5, C2×C5⋊D4, C12.D4, C15⋊C8, C6×Dic5, C3×C5⋊D4, D5×C2×C6, C22×C30, C23.F5, C158M4(2), C6×C5⋊D4, C5⋊(C12.D4)
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Dic3, D6, C22⋊C4, F5, C2×Dic3, C3⋊D4, C4.D4, C2×F5, C6.D4, C3⋊F5, C22⋊F5, C12.D4, C2×C3⋊F5, C23.F5, D10.D6, C5⋊(C12.D4)

Smallest permutation representation of C5⋊(C12.D4)
On 120 points
Generators in S120
(1 44 24 113 36)(2 25 114 13 45)(3 46 14 115 26)(4 27 116 15 47)(5 48 16 117 28)(6 29 118 17 37)(7 38 18 119 30)(8 31 120 19 39)(9 40 20 109 32)(10 33 110 21 41)(11 42 22 111 34)(12 35 112 23 43)(49 81 93 61 103)(50 104 62 94 82)(51 83 95 63 105)(52 106 64 96 84)(53 73 85 65 107)(54 108 66 86 74)(55 75 87 67 97)(56 98 68 88 76)(57 77 89 69 99)(58 100 70 90 78)(59 79 91 71 101)(60 102 72 92 80)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)
(1 103 10 106 7 97 4 100)(2 102 11 105 8 108 5 99)(3 101 12 104 9 107 6 98)(13 60 22 51 19 54 16 57)(14 59 23 50 20 53 17 56)(15 58 24 49 21 52 18 55)(25 80 34 83 31 74 28 77)(26 79 35 82 32 73 29 76)(27 78 36 81 33 84 30 75)(37 88 46 91 43 94 40 85)(38 87 47 90 44 93 41 96)(39 86 48 89 45 92 42 95)(61 110 64 119 67 116 70 113)(62 109 65 118 68 115 71 112)(63 120 66 117 69 114 72 111)
(1 97 10 106 7 103 4 100)(2 102 11 99 8 108 5 105)(3 107 12 104 9 101 6 98)(13 60 22 57 19 54 16 51)(14 53 23 50 20 59 17 56)(15 58 24 55 21 52 18 49)(25 80 34 77 31 74 28 83)(26 73 35 82 32 79 29 76)(27 78 36 75 33 84 30 81)(37 88 46 85 43 94 40 91)(38 93 47 90 44 87 41 96)(39 86 48 95 45 92 42 89)(61 116 70 113 67 110 64 119)(62 109 71 118 68 115 65 112)(63 114 72 111 69 120 66 117)

G:=sub<Sym(120)| (1,44,24,113,36)(2,25,114,13,45)(3,46,14,115,26)(4,27,116,15,47)(5,48,16,117,28)(6,29,118,17,37)(7,38,18,119,30)(8,31,120,19,39)(9,40,20,109,32)(10,33,110,21,41)(11,42,22,111,34)(12,35,112,23,43)(49,81,93,61,103)(50,104,62,94,82)(51,83,95,63,105)(52,106,64,96,84)(53,73,85,65,107)(54,108,66,86,74)(55,75,87,67,97)(56,98,68,88,76)(57,77,89,69,99)(58,100,70,90,78)(59,79,91,71,101)(60,102,72,92,80), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,103,10,106,7,97,4,100)(2,102,11,105,8,108,5,99)(3,101,12,104,9,107,6,98)(13,60,22,51,19,54,16,57)(14,59,23,50,20,53,17,56)(15,58,24,49,21,52,18,55)(25,80,34,83,31,74,28,77)(26,79,35,82,32,73,29,76)(27,78,36,81,33,84,30,75)(37,88,46,91,43,94,40,85)(38,87,47,90,44,93,41,96)(39,86,48,89,45,92,42,95)(61,110,64,119,67,116,70,113)(62,109,65,118,68,115,71,112)(63,120,66,117,69,114,72,111), (1,97,10,106,7,103,4,100)(2,102,11,99,8,108,5,105)(3,107,12,104,9,101,6,98)(13,60,22,57,19,54,16,51)(14,53,23,50,20,59,17,56)(15,58,24,55,21,52,18,49)(25,80,34,77,31,74,28,83)(26,73,35,82,32,79,29,76)(27,78,36,75,33,84,30,81)(37,88,46,85,43,94,40,91)(38,93,47,90,44,87,41,96)(39,86,48,95,45,92,42,89)(61,116,70,113,67,110,64,119)(62,109,71,118,68,115,65,112)(63,114,72,111,69,120,66,117)>;

G:=Group( (1,44,24,113,36)(2,25,114,13,45)(3,46,14,115,26)(4,27,116,15,47)(5,48,16,117,28)(6,29,118,17,37)(7,38,18,119,30)(8,31,120,19,39)(9,40,20,109,32)(10,33,110,21,41)(11,42,22,111,34)(12,35,112,23,43)(49,81,93,61,103)(50,104,62,94,82)(51,83,95,63,105)(52,106,64,96,84)(53,73,85,65,107)(54,108,66,86,74)(55,75,87,67,97)(56,98,68,88,76)(57,77,89,69,99)(58,100,70,90,78)(59,79,91,71,101)(60,102,72,92,80), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120), (1,103,10,106,7,97,4,100)(2,102,11,105,8,108,5,99)(3,101,12,104,9,107,6,98)(13,60,22,51,19,54,16,57)(14,59,23,50,20,53,17,56)(15,58,24,49,21,52,18,55)(25,80,34,83,31,74,28,77)(26,79,35,82,32,73,29,76)(27,78,36,81,33,84,30,75)(37,88,46,91,43,94,40,85)(38,87,47,90,44,93,41,96)(39,86,48,89,45,92,42,95)(61,110,64,119,67,116,70,113)(62,109,65,118,68,115,71,112)(63,120,66,117,69,114,72,111), (1,97,10,106,7,103,4,100)(2,102,11,99,8,108,5,105)(3,107,12,104,9,101,6,98)(13,60,22,57,19,54,16,51)(14,53,23,50,20,59,17,56)(15,58,24,55,21,52,18,49)(25,80,34,77,31,74,28,83)(26,73,35,82,32,79,29,76)(27,78,36,75,33,84,30,81)(37,88,46,85,43,94,40,91)(38,93,47,90,44,87,41,96)(39,86,48,95,45,92,42,89)(61,116,70,113,67,110,64,119)(62,109,71,118,68,115,65,112)(63,114,72,111,69,120,66,117) );

G=PermutationGroup([[(1,44,24,113,36),(2,25,114,13,45),(3,46,14,115,26),(4,27,116,15,47),(5,48,16,117,28),(6,29,118,17,37),(7,38,18,119,30),(8,31,120,19,39),(9,40,20,109,32),(10,33,110,21,41),(11,42,22,111,34),(12,35,112,23,43),(49,81,93,61,103),(50,104,62,94,82),(51,83,95,63,105),(52,106,64,96,84),(53,73,85,65,107),(54,108,66,86,74),(55,75,87,67,97),(56,98,68,88,76),(57,77,89,69,99),(58,100,70,90,78),(59,79,91,71,101),(60,102,72,92,80)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120)], [(1,103,10,106,7,97,4,100),(2,102,11,105,8,108,5,99),(3,101,12,104,9,107,6,98),(13,60,22,51,19,54,16,57),(14,59,23,50,20,53,17,56),(15,58,24,49,21,52,18,55),(25,80,34,83,31,74,28,77),(26,79,35,82,32,73,29,76),(27,78,36,81,33,84,30,75),(37,88,46,91,43,94,40,85),(38,87,47,90,44,93,41,96),(39,86,48,89,45,92,42,95),(61,110,64,119,67,116,70,113),(62,109,65,118,68,115,71,112),(63,120,66,117,69,114,72,111)], [(1,97,10,106,7,103,4,100),(2,102,11,99,8,108,5,105),(3,107,12,104,9,101,6,98),(13,60,22,57,19,54,16,51),(14,53,23,50,20,59,17,56),(15,58,24,55,21,52,18,49),(25,80,34,77,31,74,28,83),(26,73,35,82,32,79,29,76),(27,78,36,75,33,84,30,81),(37,88,46,85,43,94,40,91),(38,93,47,90,44,87,41,96),(39,86,48,95,45,92,42,89),(61,116,70,113,67,110,64,119),(62,109,71,118,68,115,65,112),(63,114,72,111,69,120,66,117)]])

45 conjugacy classes

class 1 2A2B2C2D 3 4A4B 5 6A6B6C6D6E6F6G8A8B8C8D10A···10G12A12B15A15B30A···30N
order1222234456666666888810···101212151530···30
size112420210104222442020606060604···42020444···4

45 irreducible representations

dim111112222224444444444
type++++++--++++
imageC1C2C2C4C4S3D4D6Dic3Dic3C3⋊D4F5C4.D4C2×F5C3⋊F5C22⋊F5C12.D4C2×C3⋊F5C23.F5D10.D6C5⋊(C12.D4)
kernelC5⋊(C12.D4)C158M4(2)C6×C5⋊D4D5×C2×C6C22×C30C2×C5⋊D4C3×Dic5C2×Dic5C22×D5C22×C10Dic5C22×C6C15C2×C6C23C6C5C22C3C2C1
# reps121221211141112222448

Matrix representation of C5⋊(C12.D4) in GL4(𝔽241) generated by

91000
09800
002050
00087
,
022500
16000
00015
002260
,
0010
000240
0100
1000
,
0010
0001
0100
240000
G:=sub<GL(4,GF(241))| [91,0,0,0,0,98,0,0,0,0,205,0,0,0,0,87],[0,16,0,0,225,0,0,0,0,0,0,226,0,0,15,0],[0,0,0,1,0,0,1,0,1,0,0,0,0,240,0,0],[0,0,0,240,0,0,1,0,1,0,0,0,0,1,0,0] >;

C5⋊(C12.D4) in GAP, Magma, Sage, TeX

C_5\rtimes (C_{12}.D_4)
% in TeX

G:=Group("C5:(C12.D4)");
// GroupNames label

G:=SmallGroup(480,318);
// by ID

G=gap.SmallGroup(480,318);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,28,141,219,100,675,2693,14118,4724]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^12=1,c^4=b^6,d^2=b^9,b*a*b^-1=a^-1,c*a*c^-1=d*a*d^-1=a^2,c*b*c^-1=b^-1,d*b*d^-1=b^5,d*c*d^-1=b^3*c^3>;
// generators/relations

׿
×
𝔽