Copied to
clipboard

G = D3018D4order 480 = 25·3·5

3rd semidirect product of D30 and D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D3018D4, (C2×C6)⋊2D20, C158C22≀C2, (C2×C30)⋊11D4, C6.92(D4×D5), C52(C232D6), (C2×Dic5)⋊5D6, C10.94(S3×D4), C6.71(C2×D20), (C22×D5)⋊4D6, C34(C22⋊D20), (C2×Dic3)⋊5D10, C30.252(C2×D4), (C23×D15)⋊6C2, D304C436C2, C23.55(S3×D5), C6.D414D5, C224(C3⋊D20), (C6×Dic5)⋊9C22, (C22×C6).48D10, (C22×C10).63D6, (C2×C30).214C23, (C10×Dic3)⋊9C22, C2.44(D10⋊D6), (C22×C30).76C22, (C22×D15).114C22, (C2×C5⋊D4)⋊9S3, (C6×C5⋊D4)⋊9C2, (D5×C2×C6)⋊3C22, (C2×C3⋊D20)⋊16C2, (C2×C10)⋊8(C3⋊D4), C2.26(C2×C3⋊D20), C10.24(C2×C3⋊D4), C22.243(C2×S3×D5), (C5×C6.D4)⋊16C2, (C2×C6).226(C22×D5), (C2×C10).226(C22×S3), SmallGroup(480,648)

Series: Derived Chief Lower central Upper central

C1C2×C30 — D3018D4
C1C5C15C30C2×C30D5×C2×C6C2×C3⋊D20 — D3018D4
C15C2×C30 — D3018D4
C1C22C23

Generators and relations for D3018D4
 G = < a,b,c,d | a30=b2=c4=d2=1, bab=a-1, cac-1=dad=a19, cbc-1=dbd=a3b, dcd=c-1 >

Subgroups: 1884 in 260 conjugacy classes, 56 normal (26 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C5, S3, C6, C6, C6, C2×C4, D4, C23, C23, D5, C10, C10, C10, Dic3, C12, D6, C2×C6, C2×C6, C2×C6, C15, C22⋊C4, C2×D4, C24, Dic5, C20, D10, C2×C10, C2×C10, C2×C10, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C22×S3, C22×C6, C22×C6, C3×D5, D15, C30, C30, C30, C22≀C2, D20, C2×Dic5, C5⋊D4, C2×C20, C22×D5, C22×D5, C22×C10, D6⋊C4, C6.D4, C2×C3⋊D4, C6×D4, S3×C23, C5×Dic3, C3×Dic5, C6×D5, D30, D30, C2×C30, C2×C30, C2×C30, D10⋊C4, C5×C22⋊C4, C2×D20, C2×C5⋊D4, C23×D5, C232D6, C3⋊D20, C6×Dic5, C3×C5⋊D4, C10×Dic3, D5×C2×C6, C22×D15, C22×D15, C22×C30, C22⋊D20, D304C4, C5×C6.D4, C2×C3⋊D20, C6×C5⋊D4, C23×D15, D3018D4
Quotients: C1, C2, C22, S3, D4, C23, D5, D6, C2×D4, D10, C3⋊D4, C22×S3, C22≀C2, D20, C22×D5, S3×D4, C2×C3⋊D4, S3×D5, C2×D20, D4×D5, C232D6, C3⋊D20, C2×S3×D5, C22⋊D20, C2×C3⋊D20, D10⋊D6, D3018D4

Smallest permutation representation of D3018D4
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 51)(2 50)(3 49)(4 48)(5 47)(6 46)(7 45)(8 44)(9 43)(10 42)(11 41)(12 40)(13 39)(14 38)(15 37)(16 36)(17 35)(18 34)(19 33)(20 32)(21 31)(22 60)(23 59)(24 58)(25 57)(26 56)(27 55)(28 54)(29 53)(30 52)(61 97)(62 96)(63 95)(64 94)(65 93)(66 92)(67 91)(68 120)(69 119)(70 118)(71 117)(72 116)(73 115)(74 114)(75 113)(76 112)(77 111)(78 110)(79 109)(80 108)(81 107)(82 106)(83 105)(84 104)(85 103)(86 102)(87 101)(88 100)(89 99)(90 98)
(1 118 52 86)(2 107 53 75)(3 96 54 64)(4 115 55 83)(5 104 56 72)(6 93 57 61)(7 112 58 80)(8 101 59 69)(9 120 60 88)(10 109 31 77)(11 98 32 66)(12 117 33 85)(13 106 34 74)(14 95 35 63)(15 114 36 82)(16 103 37 71)(17 92 38 90)(18 111 39 79)(19 100 40 68)(20 119 41 87)(21 108 42 76)(22 97 43 65)(23 116 44 84)(24 105 45 73)(25 94 46 62)(26 113 47 81)(27 102 48 70)(28 91 49 89)(29 110 50 78)(30 99 51 67)
(1 86)(2 75)(3 64)(4 83)(5 72)(6 61)(7 80)(8 69)(9 88)(10 77)(11 66)(12 85)(13 74)(14 63)(15 82)(16 71)(17 90)(18 79)(19 68)(20 87)(21 76)(22 65)(23 84)(24 73)(25 62)(26 81)(27 70)(28 89)(29 78)(30 67)(31 109)(32 98)(33 117)(34 106)(35 95)(36 114)(37 103)(38 92)(39 111)(40 100)(41 119)(42 108)(43 97)(44 116)(45 105)(46 94)(47 113)(48 102)(49 91)(50 110)(51 99)(52 118)(53 107)(54 96)(55 115)(56 104)(57 93)(58 112)(59 101)(60 120)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,51)(2,50)(3,49)(4,48)(5,47)(6,46)(7,45)(8,44)(9,43)(10,42)(11,41)(12,40)(13,39)(14,38)(15,37)(16,36)(17,35)(18,34)(19,33)(20,32)(21,31)(22,60)(23,59)(24,58)(25,57)(26,56)(27,55)(28,54)(29,53)(30,52)(61,97)(62,96)(63,95)(64,94)(65,93)(66,92)(67,91)(68,120)(69,119)(70,118)(71,117)(72,116)(73,115)(74,114)(75,113)(76,112)(77,111)(78,110)(79,109)(80,108)(81,107)(82,106)(83,105)(84,104)(85,103)(86,102)(87,101)(88,100)(89,99)(90,98), (1,118,52,86)(2,107,53,75)(3,96,54,64)(4,115,55,83)(5,104,56,72)(6,93,57,61)(7,112,58,80)(8,101,59,69)(9,120,60,88)(10,109,31,77)(11,98,32,66)(12,117,33,85)(13,106,34,74)(14,95,35,63)(15,114,36,82)(16,103,37,71)(17,92,38,90)(18,111,39,79)(19,100,40,68)(20,119,41,87)(21,108,42,76)(22,97,43,65)(23,116,44,84)(24,105,45,73)(25,94,46,62)(26,113,47,81)(27,102,48,70)(28,91,49,89)(29,110,50,78)(30,99,51,67), (1,86)(2,75)(3,64)(4,83)(5,72)(6,61)(7,80)(8,69)(9,88)(10,77)(11,66)(12,85)(13,74)(14,63)(15,82)(16,71)(17,90)(18,79)(19,68)(20,87)(21,76)(22,65)(23,84)(24,73)(25,62)(26,81)(27,70)(28,89)(29,78)(30,67)(31,109)(32,98)(33,117)(34,106)(35,95)(36,114)(37,103)(38,92)(39,111)(40,100)(41,119)(42,108)(43,97)(44,116)(45,105)(46,94)(47,113)(48,102)(49,91)(50,110)(51,99)(52,118)(53,107)(54,96)(55,115)(56,104)(57,93)(58,112)(59,101)(60,120)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,51)(2,50)(3,49)(4,48)(5,47)(6,46)(7,45)(8,44)(9,43)(10,42)(11,41)(12,40)(13,39)(14,38)(15,37)(16,36)(17,35)(18,34)(19,33)(20,32)(21,31)(22,60)(23,59)(24,58)(25,57)(26,56)(27,55)(28,54)(29,53)(30,52)(61,97)(62,96)(63,95)(64,94)(65,93)(66,92)(67,91)(68,120)(69,119)(70,118)(71,117)(72,116)(73,115)(74,114)(75,113)(76,112)(77,111)(78,110)(79,109)(80,108)(81,107)(82,106)(83,105)(84,104)(85,103)(86,102)(87,101)(88,100)(89,99)(90,98), (1,118,52,86)(2,107,53,75)(3,96,54,64)(4,115,55,83)(5,104,56,72)(6,93,57,61)(7,112,58,80)(8,101,59,69)(9,120,60,88)(10,109,31,77)(11,98,32,66)(12,117,33,85)(13,106,34,74)(14,95,35,63)(15,114,36,82)(16,103,37,71)(17,92,38,90)(18,111,39,79)(19,100,40,68)(20,119,41,87)(21,108,42,76)(22,97,43,65)(23,116,44,84)(24,105,45,73)(25,94,46,62)(26,113,47,81)(27,102,48,70)(28,91,49,89)(29,110,50,78)(30,99,51,67), (1,86)(2,75)(3,64)(4,83)(5,72)(6,61)(7,80)(8,69)(9,88)(10,77)(11,66)(12,85)(13,74)(14,63)(15,82)(16,71)(17,90)(18,79)(19,68)(20,87)(21,76)(22,65)(23,84)(24,73)(25,62)(26,81)(27,70)(28,89)(29,78)(30,67)(31,109)(32,98)(33,117)(34,106)(35,95)(36,114)(37,103)(38,92)(39,111)(40,100)(41,119)(42,108)(43,97)(44,116)(45,105)(46,94)(47,113)(48,102)(49,91)(50,110)(51,99)(52,118)(53,107)(54,96)(55,115)(56,104)(57,93)(58,112)(59,101)(60,120) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,51),(2,50),(3,49),(4,48),(5,47),(6,46),(7,45),(8,44),(9,43),(10,42),(11,41),(12,40),(13,39),(14,38),(15,37),(16,36),(17,35),(18,34),(19,33),(20,32),(21,31),(22,60),(23,59),(24,58),(25,57),(26,56),(27,55),(28,54),(29,53),(30,52),(61,97),(62,96),(63,95),(64,94),(65,93),(66,92),(67,91),(68,120),(69,119),(70,118),(71,117),(72,116),(73,115),(74,114),(75,113),(76,112),(77,111),(78,110),(79,109),(80,108),(81,107),(82,106),(83,105),(84,104),(85,103),(86,102),(87,101),(88,100),(89,99),(90,98)], [(1,118,52,86),(2,107,53,75),(3,96,54,64),(4,115,55,83),(5,104,56,72),(6,93,57,61),(7,112,58,80),(8,101,59,69),(9,120,60,88),(10,109,31,77),(11,98,32,66),(12,117,33,85),(13,106,34,74),(14,95,35,63),(15,114,36,82),(16,103,37,71),(17,92,38,90),(18,111,39,79),(19,100,40,68),(20,119,41,87),(21,108,42,76),(22,97,43,65),(23,116,44,84),(24,105,45,73),(25,94,46,62),(26,113,47,81),(27,102,48,70),(28,91,49,89),(29,110,50,78),(30,99,51,67)], [(1,86),(2,75),(3,64),(4,83),(5,72),(6,61),(7,80),(8,69),(9,88),(10,77),(11,66),(12,85),(13,74),(14,63),(15,82),(16,71),(17,90),(18,79),(19,68),(20,87),(21,76),(22,65),(23,84),(24,73),(25,62),(26,81),(27,70),(28,89),(29,78),(30,67),(31,109),(32,98),(33,117),(34,106),(35,95),(36,114),(37,103),(38,92),(39,111),(40,100),(41,119),(42,108),(43,97),(44,116),(45,105),(46,94),(47,113),(48,102),(49,91),(50,110),(51,99),(52,118),(53,107),(54,96),(55,115),(56,104),(57,93),(58,112),(59,101),(60,120)]])

60 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J 3 4A4B4C5A5B6A6B6C6D6E6F6G10A···10F10G10H10I10J12A12B15A15B20A···20H30A···30N
order12222222222344455666666610···10101010101212151520···2030···30
size11112220303030302121220222224420202···2444420204412···124···4

60 irreducible representations

dim11111122222222222444444
type++++++++++++++++++++++
imageC1C2C2C2C2C2S3D4D4D5D6D6D6D10D10C3⋊D4D20S3×D4S3×D5D4×D5C3⋊D20C2×S3×D5D10⋊D6
kernelD3018D4D304C4C5×C6.D4C2×C3⋊D20C6×C5⋊D4C23×D15C2×C5⋊D4D30C2×C30C6.D4C2×Dic5C22×D5C22×C10C2×Dic3C22×C6C2×C10C2×C6C10C23C6C22C22C2
# reps12121114221114248224428

Matrix representation of D3018D4 in GL6(𝔽61)

6000000
0600000
0060100
0060000
0000441
0000600
,
100000
7600000
0060000
0060100
0000441
00001717
,
39150000
49220000
001000
000100
00002954
00005932
,
39150000
41220000
001000
000100
00002954
00005932

G:=sub<GL(6,GF(61))| [60,0,0,0,0,0,0,60,0,0,0,0,0,0,60,60,0,0,0,0,1,0,0,0,0,0,0,0,44,60,0,0,0,0,1,0],[1,7,0,0,0,0,0,60,0,0,0,0,0,0,60,60,0,0,0,0,0,1,0,0,0,0,0,0,44,17,0,0,0,0,1,17],[39,49,0,0,0,0,15,22,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,29,59,0,0,0,0,54,32],[39,41,0,0,0,0,15,22,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,29,59,0,0,0,0,54,32] >;

D3018D4 in GAP, Magma, Sage, TeX

D_{30}\rtimes_{18}D_4
% in TeX

G:=Group("D30:18D4");
// GroupNames label

G:=SmallGroup(480,648);
// by ID

G=gap.SmallGroup(480,648);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,141,64,422,219,1356,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^30=b^2=c^4=d^2=1,b*a*b=a^-1,c*a*c^-1=d*a*d=a^19,c*b*c^-1=d*b*d=a^3*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽