Extensions 1→N→G→Q→1 with N=C3 and Q=Dic5.5D4

Direct product G=N×Q with N=C3 and Q=Dic5.5D4
dρLabelID
C3×Dic5.5D4240C3xDic5.5D4480,678

Semidirect products G=N:Q with N=C3 and Q=Dic5.5D4
extensionφ:Q→Aut NdρLabelID
C31(Dic5.5D4) = Dic5.8D12φ: Dic5.5D4/C4×Dic5C2 ⊆ Aut C3240C3:1(Dic5.5D4)480,426
C32(Dic5.5D4) = Dic15.10D4φ: Dic5.5D4/D10⋊C4C2 ⊆ Aut C3240C3:2(Dic5.5D4)480,538
C33(Dic5.5D4) = Dic15.31D4φ: Dic5.5D4/D10⋊C4C2 ⊆ Aut C3240C3:3(Dic5.5D4)480,540
C34(Dic5.5D4) = Dic15.19D4φ: Dic5.5D4/C23.D5C2 ⊆ Aut C3240C3:4(Dic5.5D4)480,602
C35(Dic5.5D4) = C23.11D30φ: Dic5.5D4/C5×C22⋊C4C2 ⊆ Aut C3240C3:5(Dic5.5D4)480,850
C36(Dic5.5D4) = (C2×C20).D6φ: Dic5.5D4/C2×Dic10C2 ⊆ Aut C3240C3:6(Dic5.5D4)480,402
C37(Dic5.5D4) = C6.(D4×D5)φ: Dic5.5D4/C2×C5⋊D4C2 ⊆ Aut C3240C3:7(Dic5.5D4)480,610


׿
×
𝔽