Extensions 1→N→G→Q→1 with N=C10xC3:D4 and Q=C2

Direct product G=NxQ with N=C10xC3:D4 and Q=C2
dρLabelID
C2xC10xC3:D4240C2xC10xC3:D4480,1164

Semidirect products G=N:Q with N=C10xC3:D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C10xC3:D4):1C2 = (C6xD5):D4φ: C2/C1C2 ⊆ Out C10xC3:D4240(C10xC3:D4):1C2480,625
(C10xC3:D4):2C2 = D30:7D4φ: C2/C1C2 ⊆ Out C10xC3:D4240(C10xC3:D4):2C2480,633
(C10xC3:D4):3C2 = Dic15:4D4φ: C2/C1C2 ⊆ Out C10xC3:D4240(C10xC3:D4):3C2480,634
(C10xC3:D4):4C2 = (C2xC30):D4φ: C2/C1C2 ⊆ Out C10xC3:D4120(C10xC3:D4):4C2480,639
(C10xC3:D4):5C2 = (S3xC10):D4φ: C2/C1C2 ⊆ Out C10xC3:D4240(C10xC3:D4):5C2480,641
(C10xC3:D4):6C2 = (C2xC10):4D12φ: C2/C1C2 ⊆ Out C10xC3:D4240(C10xC3:D4):6C2480,642
(C10xC3:D4):7C2 = Dic15:5D4φ: C2/C1C2 ⊆ Out C10xC3:D4240(C10xC3:D4):7C2480,643
(C10xC3:D4):8C2 = Dic15:18D4φ: C2/C1C2 ⊆ Out C10xC3:D4240(C10xC3:D4):8C2480,647
(C10xC3:D4):9C2 = D30:19D4φ: C2/C1C2 ⊆ Out C10xC3:D4120(C10xC3:D4):9C2480,649
(C10xC3:D4):10C2 = D30:8D4φ: C2/C1C2 ⊆ Out C10xC3:D4120(C10xC3:D4):10C2480,653
(C10xC3:D4):11C2 = C2xC30.C23φ: C2/C1C2 ⊆ Out C10xC3:D4240(C10xC3:D4):11C2480,1114
(C10xC3:D4):12C2 = C2xDic3.D10φ: C2/C1C2 ⊆ Out C10xC3:D4240(C10xC3:D4):12C2480,1116
(C10xC3:D4):13C2 = C2xD5xC3:D4φ: C2/C1C2 ⊆ Out C10xC3:D4120(C10xC3:D4):13C2480,1122
(C10xC3:D4):14C2 = C2xD10:D6φ: C2/C1C2 ⊆ Out C10xC3:D4120(C10xC3:D4):14C2480,1124
(C10xC3:D4):15C2 = C15:2+ 1+4φ: C2/C1C2 ⊆ Out C10xC3:D41204(C10xC3:D4):15C2480,1125
(C10xC3:D4):16C2 = C5xD6:D4φ: C2/C1C2 ⊆ Out C10xC3:D4120(C10xC3:D4):16C2480,761
(C10xC3:D4):17C2 = C5xDic3:D4φ: C2/C1C2 ⊆ Out C10xC3:D4240(C10xC3:D4):17C2480,763
(C10xC3:D4):18C2 = C5xC12:7D4φ: C2/C1C2 ⊆ Out C10xC3:D4240(C10xC3:D4):18C2480,809
(C10xC3:D4):19C2 = C5xC23:2D6φ: C2/C1C2 ⊆ Out C10xC3:D4120(C10xC3:D4):19C2480,816
(C10xC3:D4):20C2 = C5xD6:3D4φ: C2/C1C2 ⊆ Out C10xC3:D4240(C10xC3:D4):20C2480,817
(C10xC3:D4):21C2 = C5xC23.14D6φ: C2/C1C2 ⊆ Out C10xC3:D4240(C10xC3:D4):21C2480,818
(C10xC3:D4):22C2 = C5xC12:3D4φ: C2/C1C2 ⊆ Out C10xC3:D4240(C10xC3:D4):22C2480,819
(C10xC3:D4):23C2 = C5xC24:4S3φ: C2/C1C2 ⊆ Out C10xC3:D4120(C10xC3:D4):23C2480,832
(C10xC3:D4):24C2 = S3xD4xC10φ: C2/C1C2 ⊆ Out C10xC3:D4120(C10xC3:D4):24C2480,1154
(C10xC3:D4):25C2 = C10xD4:2S3φ: C2/C1C2 ⊆ Out C10xC3:D4240(C10xC3:D4):25C2480,1155
(C10xC3:D4):26C2 = C5xD4:6D6φ: C2/C1C2 ⊆ Out C10xC3:D41204(C10xC3:D4):26C2480,1156
(C10xC3:D4):27C2 = C10xC4oD12φ: trivial image240(C10xC3:D4):27C2480,1153

Non-split extensions G=N.Q with N=C10xC3:D4 and Q=C2
extensionφ:Q→Out NdρLabelID
(C10xC3:D4).1C2 = C15:8(C23:C4)φ: C2/C1C2 ⊆ Out C10xC3:D41204(C10xC3:D4).1C2480,72
(C10xC3:D4).2C2 = C23.D5:S3φ: C2/C1C2 ⊆ Out C10xC3:D4240(C10xC3:D4).2C2480,601
(C10xC3:D4).3C2 = C30.(C2xD4)φ: C2/C1C2 ⊆ Out C10xC3:D4240(C10xC3:D4).3C2480,615
(C10xC3:D4).4C2 = (C2xC10).D12φ: C2/C1C2 ⊆ Out C10xC3:D4240(C10xC3:D4).4C2480,619
(C10xC3:D4).5C2 = Dic5xC3:D4φ: C2/C1C2 ⊆ Out C10xC3:D4240(C10xC3:D4).5C2480,627
(C10xC3:D4).6C2 = (S3xC10).D4φ: C2/C1C2 ⊆ Out C10xC3:D4240(C10xC3:D4).6C2480,631
(C10xC3:D4).7C2 = Dic15:17D4φ: C2/C1C2 ⊆ Out C10xC3:D4240(C10xC3:D4).7C2480,636
(C10xC3:D4).8C2 = C5xC23.6D6φ: C2/C1C2 ⊆ Out C10xC3:D41204(C10xC3:D4).8C2480,125
(C10xC3:D4).9C2 = C5xDic3:4D4φ: C2/C1C2 ⊆ Out C10xC3:D4240(C10xC3:D4).9C2480,760
(C10xC3:D4).10C2 = C5xC23.9D6φ: C2/C1C2 ⊆ Out C10xC3:D4240(C10xC3:D4).10C2480,762
(C10xC3:D4).11C2 = C5xC23.11D6φ: C2/C1C2 ⊆ Out C10xC3:D4240(C10xC3:D4).11C2480,764
(C10xC3:D4).12C2 = C5xC23.21D6φ: C2/C1C2 ⊆ Out C10xC3:D4240(C10xC3:D4).12C2480,765
(C10xC3:D4).13C2 = C5xC23.28D6φ: C2/C1C2 ⊆ Out C10xC3:D4240(C10xC3:D4).13C2480,808
(C10xC3:D4).14C2 = C20xC3:D4φ: trivial image240(C10xC3:D4).14C2480,807

׿
x
:
Z
F
o
wr
Q
<