Copied to
clipboard

G = D3019D4order 480 = 25·3·5

4th semidirect product of D30 and D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D3019D4, C159C22≀C2, (C2×C10)⋊5D12, (C2×C30)⋊12D4, C6.93(D4×D5), C54(D6⋊D4), (C2×Dic5)⋊6D6, C10.95(S3×D4), C32(C23⋊D10), (C2×Dic3)⋊6D10, C10.71(C2×D12), C30.253(C2×D4), (C23×D15)⋊7C2, (C22×S3)⋊3D10, C23.D514S3, D304C437C2, C23.56(S3×D5), C224(C5⋊D12), (C22×C10).64D6, (C22×C6).49D10, (C2×C30).215C23, (C6×Dic5)⋊10C22, C2.45(D10⋊D6), (C10×Dic3)⋊10C22, (C22×C30).77C22, (C22×D15).115C22, (C2×C3⋊D4)⋊9D5, (C10×C3⋊D4)⋊9C2, (C2×C6)⋊4(C5⋊D4), (S3×C2×C10)⋊3C22, C6.25(C2×C5⋊D4), (C2×C5⋊D12)⋊16C2, C2.26(C2×C5⋊D12), C22.244(C2×S3×D5), (C3×C23.D5)⋊16C2, (C2×C6).227(C22×D5), (C2×C10).227(C22×S3), SmallGroup(480,649)

Series: Derived Chief Lower central Upper central

C1C2×C30 — D3019D4
C1C5C15C30C2×C30C6×Dic5C2×C5⋊D12 — D3019D4
C15C2×C30 — D3019D4
C1C22C23

Generators and relations for D3019D4
 G = < a,b,c,d | a30=b2=c4=d2=1, bab=a-1, cac-1=dad=a11, cbc-1=dbd=a25b, dcd=c-1 >

Subgroups: 1836 in 260 conjugacy classes, 56 normal (26 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C5, S3, C6, C6, C6, C2×C4, D4, C23, C23, D5, C10, C10, C10, Dic3, C12, D6, C2×C6, C2×C6, C2×C6, C15, C22⋊C4, C2×D4, C24, Dic5, C20, D10, C2×C10, C2×C10, C2×C10, D12, C2×Dic3, C3⋊D4, C2×C12, C22×S3, C22×S3, C22×C6, C5×S3, D15, C30, C30, C30, C22≀C2, C2×Dic5, C5⋊D4, C2×C20, C5×D4, C22×D5, C22×C10, C22×C10, D6⋊C4, C3×C22⋊C4, C2×D12, C2×C3⋊D4, S3×C23, C5×Dic3, C3×Dic5, S3×C10, D30, D30, C2×C30, C2×C30, C2×C30, D10⋊C4, C23.D5, C2×C5⋊D4, D4×C10, C23×D5, D6⋊D4, C5⋊D12, C6×Dic5, C10×Dic3, C5×C3⋊D4, S3×C2×C10, C22×D15, C22×D15, C22×C30, C23⋊D10, D304C4, C3×C23.D5, C2×C5⋊D12, C10×C3⋊D4, C23×D15, D3019D4
Quotients: C1, C2, C22, S3, D4, C23, D5, D6, C2×D4, D10, D12, C22×S3, C22≀C2, C5⋊D4, C22×D5, C2×D12, S3×D4, S3×D5, D4×D5, C2×C5⋊D4, D6⋊D4, C5⋊D12, C2×S3×D5, C23⋊D10, C2×C5⋊D12, D10⋊D6, D3019D4

Smallest permutation representation of D3019D4
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 101)(2 100)(3 99)(4 98)(5 97)(6 96)(7 95)(8 94)(9 93)(10 92)(11 91)(12 120)(13 119)(14 118)(15 117)(16 116)(17 115)(18 114)(19 113)(20 112)(21 111)(22 110)(23 109)(24 108)(25 107)(26 106)(27 105)(28 104)(29 103)(30 102)(31 84)(32 83)(33 82)(34 81)(35 80)(36 79)(37 78)(38 77)(39 76)(40 75)(41 74)(42 73)(43 72)(44 71)(45 70)(46 69)(47 68)(48 67)(49 66)(50 65)(51 64)(52 63)(53 62)(54 61)(55 90)(56 89)(57 88)(58 87)(59 86)(60 85)
(1 79 102 52)(2 90 103 33)(3 71 104 44)(4 82 105 55)(5 63 106 36)(6 74 107 47)(7 85 108 58)(8 66 109 39)(9 77 110 50)(10 88 111 31)(11 69 112 42)(12 80 113 53)(13 61 114 34)(14 72 115 45)(15 83 116 56)(16 64 117 37)(17 75 118 48)(18 86 119 59)(19 67 120 40)(20 78 91 51)(21 89 92 32)(22 70 93 43)(23 81 94 54)(24 62 95 35)(25 73 96 46)(26 84 97 57)(27 65 98 38)(28 76 99 49)(29 87 100 60)(30 68 101 41)
(1 52)(2 33)(3 44)(4 55)(5 36)(6 47)(7 58)(8 39)(9 50)(10 31)(11 42)(12 53)(13 34)(14 45)(15 56)(16 37)(17 48)(18 59)(19 40)(20 51)(21 32)(22 43)(23 54)(24 35)(25 46)(26 57)(27 38)(28 49)(29 60)(30 41)(61 114)(62 95)(63 106)(64 117)(65 98)(66 109)(67 120)(68 101)(69 112)(70 93)(71 104)(72 115)(73 96)(74 107)(75 118)(76 99)(77 110)(78 91)(79 102)(80 113)(81 94)(82 105)(83 116)(84 97)(85 108)(86 119)(87 100)(88 111)(89 92)(90 103)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,101)(2,100)(3,99)(4,98)(5,97)(6,96)(7,95)(8,94)(9,93)(10,92)(11,91)(12,120)(13,119)(14,118)(15,117)(16,116)(17,115)(18,114)(19,113)(20,112)(21,111)(22,110)(23,109)(24,108)(25,107)(26,106)(27,105)(28,104)(29,103)(30,102)(31,84)(32,83)(33,82)(34,81)(35,80)(36,79)(37,78)(38,77)(39,76)(40,75)(41,74)(42,73)(43,72)(44,71)(45,70)(46,69)(47,68)(48,67)(49,66)(50,65)(51,64)(52,63)(53,62)(54,61)(55,90)(56,89)(57,88)(58,87)(59,86)(60,85), (1,79,102,52)(2,90,103,33)(3,71,104,44)(4,82,105,55)(5,63,106,36)(6,74,107,47)(7,85,108,58)(8,66,109,39)(9,77,110,50)(10,88,111,31)(11,69,112,42)(12,80,113,53)(13,61,114,34)(14,72,115,45)(15,83,116,56)(16,64,117,37)(17,75,118,48)(18,86,119,59)(19,67,120,40)(20,78,91,51)(21,89,92,32)(22,70,93,43)(23,81,94,54)(24,62,95,35)(25,73,96,46)(26,84,97,57)(27,65,98,38)(28,76,99,49)(29,87,100,60)(30,68,101,41), (1,52)(2,33)(3,44)(4,55)(5,36)(6,47)(7,58)(8,39)(9,50)(10,31)(11,42)(12,53)(13,34)(14,45)(15,56)(16,37)(17,48)(18,59)(19,40)(20,51)(21,32)(22,43)(23,54)(24,35)(25,46)(26,57)(27,38)(28,49)(29,60)(30,41)(61,114)(62,95)(63,106)(64,117)(65,98)(66,109)(67,120)(68,101)(69,112)(70,93)(71,104)(72,115)(73,96)(74,107)(75,118)(76,99)(77,110)(78,91)(79,102)(80,113)(81,94)(82,105)(83,116)(84,97)(85,108)(86,119)(87,100)(88,111)(89,92)(90,103)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,101)(2,100)(3,99)(4,98)(5,97)(6,96)(7,95)(8,94)(9,93)(10,92)(11,91)(12,120)(13,119)(14,118)(15,117)(16,116)(17,115)(18,114)(19,113)(20,112)(21,111)(22,110)(23,109)(24,108)(25,107)(26,106)(27,105)(28,104)(29,103)(30,102)(31,84)(32,83)(33,82)(34,81)(35,80)(36,79)(37,78)(38,77)(39,76)(40,75)(41,74)(42,73)(43,72)(44,71)(45,70)(46,69)(47,68)(48,67)(49,66)(50,65)(51,64)(52,63)(53,62)(54,61)(55,90)(56,89)(57,88)(58,87)(59,86)(60,85), (1,79,102,52)(2,90,103,33)(3,71,104,44)(4,82,105,55)(5,63,106,36)(6,74,107,47)(7,85,108,58)(8,66,109,39)(9,77,110,50)(10,88,111,31)(11,69,112,42)(12,80,113,53)(13,61,114,34)(14,72,115,45)(15,83,116,56)(16,64,117,37)(17,75,118,48)(18,86,119,59)(19,67,120,40)(20,78,91,51)(21,89,92,32)(22,70,93,43)(23,81,94,54)(24,62,95,35)(25,73,96,46)(26,84,97,57)(27,65,98,38)(28,76,99,49)(29,87,100,60)(30,68,101,41), (1,52)(2,33)(3,44)(4,55)(5,36)(6,47)(7,58)(8,39)(9,50)(10,31)(11,42)(12,53)(13,34)(14,45)(15,56)(16,37)(17,48)(18,59)(19,40)(20,51)(21,32)(22,43)(23,54)(24,35)(25,46)(26,57)(27,38)(28,49)(29,60)(30,41)(61,114)(62,95)(63,106)(64,117)(65,98)(66,109)(67,120)(68,101)(69,112)(70,93)(71,104)(72,115)(73,96)(74,107)(75,118)(76,99)(77,110)(78,91)(79,102)(80,113)(81,94)(82,105)(83,116)(84,97)(85,108)(86,119)(87,100)(88,111)(89,92)(90,103) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,101),(2,100),(3,99),(4,98),(5,97),(6,96),(7,95),(8,94),(9,93),(10,92),(11,91),(12,120),(13,119),(14,118),(15,117),(16,116),(17,115),(18,114),(19,113),(20,112),(21,111),(22,110),(23,109),(24,108),(25,107),(26,106),(27,105),(28,104),(29,103),(30,102),(31,84),(32,83),(33,82),(34,81),(35,80),(36,79),(37,78),(38,77),(39,76),(40,75),(41,74),(42,73),(43,72),(44,71),(45,70),(46,69),(47,68),(48,67),(49,66),(50,65),(51,64),(52,63),(53,62),(54,61),(55,90),(56,89),(57,88),(58,87),(59,86),(60,85)], [(1,79,102,52),(2,90,103,33),(3,71,104,44),(4,82,105,55),(5,63,106,36),(6,74,107,47),(7,85,108,58),(8,66,109,39),(9,77,110,50),(10,88,111,31),(11,69,112,42),(12,80,113,53),(13,61,114,34),(14,72,115,45),(15,83,116,56),(16,64,117,37),(17,75,118,48),(18,86,119,59),(19,67,120,40),(20,78,91,51),(21,89,92,32),(22,70,93,43),(23,81,94,54),(24,62,95,35),(25,73,96,46),(26,84,97,57),(27,65,98,38),(28,76,99,49),(29,87,100,60),(30,68,101,41)], [(1,52),(2,33),(3,44),(4,55),(5,36),(6,47),(7,58),(8,39),(9,50),(10,31),(11,42),(12,53),(13,34),(14,45),(15,56),(16,37),(17,48),(18,59),(19,40),(20,51),(21,32),(22,43),(23,54),(24,35),(25,46),(26,57),(27,38),(28,49),(29,60),(30,41),(61,114),(62,95),(63,106),(64,117),(65,98),(66,109),(67,120),(68,101),(69,112),(70,93),(71,104),(72,115),(73,96),(74,107),(75,118),(76,99),(77,110),(78,91),(79,102),(80,113),(81,94),(82,105),(83,116),(84,97),(85,108),(86,119),(87,100),(88,111),(89,92),(90,103)]])

60 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J 3 4A4B4C5A5B6A6B6C6D6E10A···10F10G10H10I10J10K10L10M10N12A12B12C12D15A15B20A20B20C20D30A···30N
order122222222223444556666610···1010101010101010101212121215152020202030···30
size1111221230303030212202022222442···24444121212122020202044121212124···4

60 irreducible representations

dim11111122222222222444444
type++++++++++++++++++++++
imageC1C2C2C2C2C2S3D4D4D5D6D6D10D10D10D12C5⋊D4S3×D4S3×D5D4×D5C5⋊D12C2×S3×D5D10⋊D6
kernelD3019D4D304C4C3×C23.D5C2×C5⋊D12C10×C3⋊D4C23×D15C23.D5D30C2×C30C2×C3⋊D4C2×Dic5C22×C10C2×Dic3C22×S3C22×C6C2×C10C2×C6C10C23C6C22C22C2
# reps12121114222122248224428

Matrix representation of D3019D4 in GL8(𝔽61)

060000000
160000000
000600000
001170000
000060000
000006000
00000010
00000001
,
160000000
060000000
0044600000
0044170000
000060000
000028100
000000600
000000060
,
060000000
600000000
00100000
00010000
000014100
0000494700
000000152
000000760
,
060000000
600000000
006000000
000600000
0000476000
0000121400
000000152
000000060

G:=sub<GL(8,GF(61))| [0,1,0,0,0,0,0,0,60,60,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,60,17,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,60,60,0,0,0,0,0,0,0,0,44,44,0,0,0,0,0,0,60,17,0,0,0,0,0,0,0,0,60,28,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,60],[0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,14,49,0,0,0,0,0,0,1,47,0,0,0,0,0,0,0,0,1,7,0,0,0,0,0,0,52,60],[0,60,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,47,12,0,0,0,0,0,0,60,14,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,52,60] >;

D3019D4 in GAP, Magma, Sage, TeX

D_{30}\rtimes_{19}D_4
% in TeX

G:=Group("D30:19D4");
// GroupNames label

G:=SmallGroup(480,649);
// by ID

G=gap.SmallGroup(480,649);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,56,141,422,219,1356,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^30=b^2=c^4=d^2=1,b*a*b=a^-1,c*a*c^-1=d*a*d=a^11,c*b*c^-1=d*b*d=a^25*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽