# Extensions 1→N→G→Q→1 with N=C23×D15 and Q=C2

Direct product G=N×Q with N=C23×D15 and Q=C2
dρLabelID
C24×D15240C2^4xD15480,1212

Semidirect products G=N:Q with N=C23×D15 and Q=C2
extensionφ:Q→Out NdρLabelID
(C23×D15)⋊1C2 = D3016D4φ: C2/C1C2 ⊆ Out C23×D15120(C2^3xD15):1C2480,847
(C23×D15)⋊2C2 = D3017D4φ: C2/C1C2 ⊆ Out C23×D15120(C2^3xD15):2C2480,902
(C23×D15)⋊3C2 = C22×D60φ: C2/C1C2 ⊆ Out C23×D15240(C2^3xD15):3C2480,1167
(C23×D15)⋊4C2 = C2×D4×D15φ: C2/C1C2 ⊆ Out C23×D15120(C2^3xD15):4C2480,1169
(C23×D15)⋊5C2 = C22×C157D4φ: C2/C1C2 ⊆ Out C23×D15240(C2^3xD15):5C2480,1179
(C23×D15)⋊6C2 = D3018D4φ: C2/C1C2 ⊆ Out C23×D15120(C2^3xD15):6C2480,648
(C23×D15)⋊7C2 = D3019D4φ: C2/C1C2 ⊆ Out C23×D15120(C2^3xD15):7C2480,649
(C23×D15)⋊8C2 = C22×C3⋊D20φ: C2/C1C2 ⊆ Out C23×D15240(C2^3xD15):8C2480,1119
(C23×D15)⋊9C2 = C22×C5⋊D12φ: C2/C1C2 ⊆ Out C23×D15240(C2^3xD15):9C2480,1120
(C23×D15)⋊10C2 = C2×D10⋊D6φ: C2/C1C2 ⊆ Out C23×D15120(C2^3xD15):10C2480,1124
(C23×D15)⋊11C2 = S3×C23×D5φ: C2/C1C2 ⊆ Out C23×D15120(C2^3xD15):11C2480,1207

Non-split extensions G=N.Q with N=C23×D15 and Q=C2
extensionφ:Q→Out NdρLabelID
(C23×D15).1C2 = C22⋊C4×D15φ: C2/C1C2 ⊆ Out C23×D15120(C2^3xD15).1C2480,845
(C23×D15).2C2 = C2×D303C4φ: C2/C1C2 ⊆ Out C23×D15240(C2^3xD15).2C2480,892
(C23×D15).3C2 = C2×D304C4φ: C2/C1C2 ⊆ Out C23×D15240(C2^3xD15).3C2480,616
(C23×D15).4C2 = D30.45D4φ: C2/C1C2 ⊆ Out C23×D15120(C2^3xD15).4C2480,637
(C23×D15).5C2 = C22×D30.C2φ: C2/C1C2 ⊆ Out C23×D15240(C2^3xD15).5C2480,1117
(C23×D15).6C2 = C22×C4×D15φ: trivial image240(C2^3xD15).6C2480,1166

׿
×
𝔽