Copied to
clipboard

G = D30.45D4order 480 = 25·3·5

18th non-split extension by D30 of D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D30.45D4, C6.89(D4×D5), D3030(C2×C4), C10.90(S3×D4), (C2×Dic5)⋊13D6, C30.241(C2×D4), C23.D511S3, D304C432C2, C23.53(S3×D5), D153(C22⋊C4), (C2×Dic3)⋊13D10, C6.D411D5, (C22×D15)⋊10C4, (C6×Dic5)⋊6C22, (C23×D15).4C2, (C22×C10).55D6, (C22×C6).40D10, C2.7(D10⋊D6), (C2×C30).203C23, C30.151(C22×C4), C224(D30.C2), (C10×Dic3)⋊6C22, (C22×C30).65C22, (C22×D15).113C22, (C2×C6)⋊4(C4×D5), C53(S3×C22⋊C4), C32(D5×C22⋊C4), C6.56(C2×C4×D5), C10.88(S3×C2×C4), (C2×C10)⋊13(C4×S3), (C2×C30)⋊22(C2×C4), C1513(C2×C22⋊C4), C22.91(C2×S3×D5), (C2×D30.C2)⋊17C2, C2.20(C2×D30.C2), (C3×C23.D5)⋊13C2, (C5×C6.D4)⋊13C2, (C2×C6).215(C22×D5), (C2×C10).215(C22×S3), SmallGroup(480,637)

Series: Derived Chief Lower central Upper central

C1C30 — D30.45D4
C1C5C15C30C2×C30C6×Dic5C2×D30.C2 — D30.45D4
C15C30 — D30.45D4
C1C22C23

Generators and relations for D30.45D4
 G = < a,b,c,d | a30=b2=c4=1, d2=a15, bab=a-1, cac-1=dad-1=a19, cbc-1=dbd-1=a18b, dcd-1=a15c-1 >

Subgroups: 1740 in 264 conjugacy classes, 68 normal (24 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C5, S3, C6, C6, C6, C2×C4, C23, C23, D5, C10, C10, C10, Dic3, C12, D6, C2×C6, C2×C6, C2×C6, C15, C22⋊C4, C22×C4, C24, Dic5, C20, D10, C2×C10, C2×C10, C2×C10, C4×S3, C2×Dic3, C2×C12, C22×S3, C22×C6, D15, D15, C30, C30, C30, C2×C22⋊C4, C4×D5, C2×Dic5, C2×C20, C22×D5, C22×C10, D6⋊C4, C6.D4, C3×C22⋊C4, S3×C2×C4, S3×C23, C5×Dic3, C3×Dic5, D30, D30, C2×C30, C2×C30, C2×C30, D10⋊C4, C23.D5, C5×C22⋊C4, C2×C4×D5, C23×D5, S3×C22⋊C4, D30.C2, C6×Dic5, C10×Dic3, C22×D15, C22×D15, C22×D15, C22×C30, D5×C22⋊C4, D304C4, C3×C23.D5, C5×C6.D4, C2×D30.C2, C23×D15, D30.45D4
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, D5, D6, C22⋊C4, C22×C4, C2×D4, D10, C4×S3, C22×S3, C2×C22⋊C4, C4×D5, C22×D5, S3×C2×C4, S3×D4, S3×D5, C2×C4×D5, D4×D5, S3×C22⋊C4, D30.C2, C2×S3×D5, D5×C22⋊C4, C2×D30.C2, D10⋊D6, D30.45D4

Smallest permutation representation of D30.45D4
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 30)(2 29)(3 28)(4 27)(5 26)(6 25)(7 24)(8 23)(9 22)(10 21)(11 20)(12 19)(13 18)(14 17)(15 16)(31 46)(32 45)(33 44)(34 43)(35 42)(36 41)(37 40)(38 39)(47 60)(48 59)(49 58)(50 57)(51 56)(52 55)(53 54)(61 80)(62 79)(63 78)(64 77)(65 76)(66 75)(67 74)(68 73)(69 72)(70 71)(81 90)(82 89)(83 88)(84 87)(85 86)(91 102)(92 101)(93 100)(94 99)(95 98)(96 97)(103 120)(104 119)(105 118)(106 117)(107 116)(108 115)(109 114)(110 113)(111 112)
(1 97 71 54)(2 116 72 43)(3 105 73 32)(4 94 74 51)(5 113 75 40)(6 102 76 59)(7 91 77 48)(8 110 78 37)(9 99 79 56)(10 118 80 45)(11 107 81 34)(12 96 82 53)(13 115 83 42)(14 104 84 31)(15 93 85 50)(16 112 86 39)(17 101 87 58)(18 120 88 47)(19 109 89 36)(20 98 90 55)(21 117 61 44)(22 106 62 33)(23 95 63 52)(24 114 64 41)(25 103 65 60)(26 92 66 49)(27 111 67 38)(28 100 68 57)(29 119 69 46)(30 108 70 35)
(1 112 16 97)(2 101 17 116)(3 120 18 105)(4 109 19 94)(5 98 20 113)(6 117 21 102)(7 106 22 91)(8 95 23 110)(9 114 24 99)(10 103 25 118)(11 92 26 107)(12 111 27 96)(13 100 28 115)(14 119 29 104)(15 108 30 93)(31 84 46 69)(32 73 47 88)(33 62 48 77)(34 81 49 66)(35 70 50 85)(36 89 51 74)(37 78 52 63)(38 67 53 82)(39 86 54 71)(40 75 55 90)(41 64 56 79)(42 83 57 68)(43 72 58 87)(44 61 59 76)(45 80 60 65)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,21)(11,20)(12,19)(13,18)(14,17)(15,16)(31,46)(32,45)(33,44)(34,43)(35,42)(36,41)(37,40)(38,39)(47,60)(48,59)(49,58)(50,57)(51,56)(52,55)(53,54)(61,80)(62,79)(63,78)(64,77)(65,76)(66,75)(67,74)(68,73)(69,72)(70,71)(81,90)(82,89)(83,88)(84,87)(85,86)(91,102)(92,101)(93,100)(94,99)(95,98)(96,97)(103,120)(104,119)(105,118)(106,117)(107,116)(108,115)(109,114)(110,113)(111,112), (1,97,71,54)(2,116,72,43)(3,105,73,32)(4,94,74,51)(5,113,75,40)(6,102,76,59)(7,91,77,48)(8,110,78,37)(9,99,79,56)(10,118,80,45)(11,107,81,34)(12,96,82,53)(13,115,83,42)(14,104,84,31)(15,93,85,50)(16,112,86,39)(17,101,87,58)(18,120,88,47)(19,109,89,36)(20,98,90,55)(21,117,61,44)(22,106,62,33)(23,95,63,52)(24,114,64,41)(25,103,65,60)(26,92,66,49)(27,111,67,38)(28,100,68,57)(29,119,69,46)(30,108,70,35), (1,112,16,97)(2,101,17,116)(3,120,18,105)(4,109,19,94)(5,98,20,113)(6,117,21,102)(7,106,22,91)(8,95,23,110)(9,114,24,99)(10,103,25,118)(11,92,26,107)(12,111,27,96)(13,100,28,115)(14,119,29,104)(15,108,30,93)(31,84,46,69)(32,73,47,88)(33,62,48,77)(34,81,49,66)(35,70,50,85)(36,89,51,74)(37,78,52,63)(38,67,53,82)(39,86,54,71)(40,75,55,90)(41,64,56,79)(42,83,57,68)(43,72,58,87)(44,61,59,76)(45,80,60,65)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,30)(2,29)(3,28)(4,27)(5,26)(6,25)(7,24)(8,23)(9,22)(10,21)(11,20)(12,19)(13,18)(14,17)(15,16)(31,46)(32,45)(33,44)(34,43)(35,42)(36,41)(37,40)(38,39)(47,60)(48,59)(49,58)(50,57)(51,56)(52,55)(53,54)(61,80)(62,79)(63,78)(64,77)(65,76)(66,75)(67,74)(68,73)(69,72)(70,71)(81,90)(82,89)(83,88)(84,87)(85,86)(91,102)(92,101)(93,100)(94,99)(95,98)(96,97)(103,120)(104,119)(105,118)(106,117)(107,116)(108,115)(109,114)(110,113)(111,112), (1,97,71,54)(2,116,72,43)(3,105,73,32)(4,94,74,51)(5,113,75,40)(6,102,76,59)(7,91,77,48)(8,110,78,37)(9,99,79,56)(10,118,80,45)(11,107,81,34)(12,96,82,53)(13,115,83,42)(14,104,84,31)(15,93,85,50)(16,112,86,39)(17,101,87,58)(18,120,88,47)(19,109,89,36)(20,98,90,55)(21,117,61,44)(22,106,62,33)(23,95,63,52)(24,114,64,41)(25,103,65,60)(26,92,66,49)(27,111,67,38)(28,100,68,57)(29,119,69,46)(30,108,70,35), (1,112,16,97)(2,101,17,116)(3,120,18,105)(4,109,19,94)(5,98,20,113)(6,117,21,102)(7,106,22,91)(8,95,23,110)(9,114,24,99)(10,103,25,118)(11,92,26,107)(12,111,27,96)(13,100,28,115)(14,119,29,104)(15,108,30,93)(31,84,46,69)(32,73,47,88)(33,62,48,77)(34,81,49,66)(35,70,50,85)(36,89,51,74)(37,78,52,63)(38,67,53,82)(39,86,54,71)(40,75,55,90)(41,64,56,79)(42,83,57,68)(43,72,58,87)(44,61,59,76)(45,80,60,65) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,30),(2,29),(3,28),(4,27),(5,26),(6,25),(7,24),(8,23),(9,22),(10,21),(11,20),(12,19),(13,18),(14,17),(15,16),(31,46),(32,45),(33,44),(34,43),(35,42),(36,41),(37,40),(38,39),(47,60),(48,59),(49,58),(50,57),(51,56),(52,55),(53,54),(61,80),(62,79),(63,78),(64,77),(65,76),(66,75),(67,74),(68,73),(69,72),(70,71),(81,90),(82,89),(83,88),(84,87),(85,86),(91,102),(92,101),(93,100),(94,99),(95,98),(96,97),(103,120),(104,119),(105,118),(106,117),(107,116),(108,115),(109,114),(110,113),(111,112)], [(1,97,71,54),(2,116,72,43),(3,105,73,32),(4,94,74,51),(5,113,75,40),(6,102,76,59),(7,91,77,48),(8,110,78,37),(9,99,79,56),(10,118,80,45),(11,107,81,34),(12,96,82,53),(13,115,83,42),(14,104,84,31),(15,93,85,50),(16,112,86,39),(17,101,87,58),(18,120,88,47),(19,109,89,36),(20,98,90,55),(21,117,61,44),(22,106,62,33),(23,95,63,52),(24,114,64,41),(25,103,65,60),(26,92,66,49),(27,111,67,38),(28,100,68,57),(29,119,69,46),(30,108,70,35)], [(1,112,16,97),(2,101,17,116),(3,120,18,105),(4,109,19,94),(5,98,20,113),(6,117,21,102),(7,106,22,91),(8,95,23,110),(9,114,24,99),(10,103,25,118),(11,92,26,107),(12,111,27,96),(13,100,28,115),(14,119,29,104),(15,108,30,93),(31,84,46,69),(32,73,47,88),(33,62,48,77),(34,81,49,66),(35,70,50,85),(36,89,51,74),(37,78,52,63),(38,67,53,82),(39,86,54,71),(40,75,55,90),(41,64,56,79),(42,83,57,68),(43,72,58,87),(44,61,59,76),(45,80,60,65)]])

66 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K 3 4A4B4C4D4E4F4G4H5A5B6A6B6C6D6E10A···10F10G10H10I10J12A12B12C12D15A15B20A···20H30A···30N
order122222222222344444444556666610···101010101012121212151520···2030···30
size111122151515153030266661010101022222442···24444202020204412···124···4

66 irreducible representations

dim1111111222222222444444
type+++++++++++++++++++
imageC1C2C2C2C2C2C4S3D4D5D6D6D10D10C4×S3C4×D5S3×D4S3×D5D4×D5D30.C2C2×S3×D5D10⋊D6
kernelD30.45D4D304C4C3×C23.D5C5×C6.D4C2×D30.C2C23×D15C22×D15C23.D5D30C6.D4C2×Dic5C22×C10C2×Dic3C22×C6C2×C10C2×C6C10C23C6C22C22C2
# reps1211218142214248224428

Matrix representation of D30.45D4 in GL6(𝔽61)

43600000
100000
00605600
0025200
0000600
0000060
,
43600000
18180000
00605600
000100
0000600
0000060
,
100000
43600000
0050000
0005000
00005052
00005411
,
6000000
1810000
0011000
0001100
00005052
0000011

G:=sub<GL(6,GF(61))| [43,1,0,0,0,0,60,0,0,0,0,0,0,0,60,25,0,0,0,0,56,2,0,0,0,0,0,0,60,0,0,0,0,0,0,60],[43,18,0,0,0,0,60,18,0,0,0,0,0,0,60,0,0,0,0,0,56,1,0,0,0,0,0,0,60,0,0,0,0,0,0,60],[1,43,0,0,0,0,0,60,0,0,0,0,0,0,50,0,0,0,0,0,0,50,0,0,0,0,0,0,50,54,0,0,0,0,52,11],[60,18,0,0,0,0,0,1,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,50,0,0,0,0,0,52,11] >;

D30.45D4 in GAP, Magma, Sage, TeX

D_{30}._{45}D_4
% in TeX

G:=Group("D30.45D4");
// GroupNames label

G:=SmallGroup(480,637);
// by ID

G=gap.SmallGroup(480,637);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,56,64,422,219,1356,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^30=b^2=c^4=1,d^2=a^15,b*a*b=a^-1,c*a*c^-1=d*a*d^-1=a^19,c*b*c^-1=d*b*d^-1=a^18*b,d*c*d^-1=a^15*c^-1>;
// generators/relations

׿
×
𝔽