Extensions 1→N→G→Q→1 with N=C5 and Q=Dic3.D4

Direct product G=N×Q with N=C5 and Q=Dic3.D4
dρLabelID
C5×Dic3.D4240C5xDic3.D4480,757

Semidirect products G=N:Q with N=C5 and Q=Dic3.D4
extensionφ:Q→Aut NdρLabelID
C51(Dic3.D4) = D102Dic6φ: Dic3.D4/Dic3⋊C4C2 ⊆ Aut C5240C5:1(Dic3.D4)480,498
C52(Dic3.D4) = D104Dic6φ: Dic3.D4/Dic3⋊C4C2 ⊆ Aut C5240C5:2(Dic3.D4)480,507
C53(Dic3.D4) = Dic15.D4φ: Dic3.D4/C4⋊Dic3C2 ⊆ Aut C5240C5:3(Dic3.D4)480,506
C54(Dic3.D4) = Dic15.48D4φ: Dic3.D4/C6.D4C2 ⊆ Aut C5240C5:4(Dic3.D4)480,652
C55(Dic3.D4) = C222Dic30φ: Dic3.D4/C3×C22⋊C4C2 ⊆ Aut C5240C5:5(Dic3.D4)480,843
C56(Dic3.D4) = D101Dic6φ: Dic3.D4/C2×Dic6C2 ⊆ Aut C5240C5:6(Dic3.D4)480,497
C57(Dic3.D4) = (C2×C10)⋊8Dic6φ: Dic3.D4/C22×Dic3C2 ⊆ Aut C5240C5:7(Dic3.D4)480,651


׿
×
𝔽