direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×Dic6, C6⋊Q8, C4.11D6, C6.1C23, C22.8D6, C12.11C22, Dic3.1C22, C3⋊1(C2×Q8), (C2×C4).4S3, (C2×C12).3C2, C2.3(C22×S3), (C2×C6).8C22, (C2×Dic3).3C2, SmallGroup(48,34)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×Dic6
G = < a,b,c | a2=b12=1, c2=b6, ab=ba, ac=ca, cbc-1=b-1 >
Character table of C2×Dic6
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 6C | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ9 | 2 | -2 | -2 | 2 | -1 | -2 | 2 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | 2 | 2 | -1 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | -2 | -2 | 2 | -1 | 2 | -2 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | 2 | 2 | -1 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ13 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ14 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ15 | 2 | -2 | 2 | -2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | √3 | √3 | -√3 | -√3 | symplectic lifted from Dic6, Schur index 2 |
ρ16 | 2 | 2 | -2 | -2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | √3 | -√3 | -√3 | √3 | symplectic lifted from Dic6, Schur index 2 |
ρ17 | 2 | -2 | 2 | -2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | -√3 | -√3 | √3 | √3 | symplectic lifted from Dic6, Schur index 2 |
ρ18 | 2 | 2 | -2 | -2 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -√3 | √3 | √3 | -√3 | symplectic lifted from Dic6, Schur index 2 |
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 13)(8 14)(9 15)(10 16)(11 17)(12 18)(25 43)(26 44)(27 45)(28 46)(29 47)(30 48)(31 37)(32 38)(33 39)(34 40)(35 41)(36 42)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 34 7 28)(2 33 8 27)(3 32 9 26)(4 31 10 25)(5 30 11 36)(6 29 12 35)(13 46 19 40)(14 45 20 39)(15 44 21 38)(16 43 22 37)(17 42 23 48)(18 41 24 47)
G:=sub<Sym(48)| (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,13)(8,14)(9,15)(10,16)(11,17)(12,18)(25,43)(26,44)(27,45)(28,46)(29,47)(30,48)(31,37)(32,38)(33,39)(34,40)(35,41)(36,42), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,34,7,28)(2,33,8,27)(3,32,9,26)(4,31,10,25)(5,30,11,36)(6,29,12,35)(13,46,19,40)(14,45,20,39)(15,44,21,38)(16,43,22,37)(17,42,23,48)(18,41,24,47)>;
G:=Group( (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,13)(8,14)(9,15)(10,16)(11,17)(12,18)(25,43)(26,44)(27,45)(28,46)(29,47)(30,48)(31,37)(32,38)(33,39)(34,40)(35,41)(36,42), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,34,7,28)(2,33,8,27)(3,32,9,26)(4,31,10,25)(5,30,11,36)(6,29,12,35)(13,46,19,40)(14,45,20,39)(15,44,21,38)(16,43,22,37)(17,42,23,48)(18,41,24,47) );
G=PermutationGroup([[(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,13),(8,14),(9,15),(10,16),(11,17),(12,18),(25,43),(26,44),(27,45),(28,46),(29,47),(30,48),(31,37),(32,38),(33,39),(34,40),(35,41),(36,42)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,34,7,28),(2,33,8,27),(3,32,9,26),(4,31,10,25),(5,30,11,36),(6,29,12,35),(13,46,19,40),(14,45,20,39),(15,44,21,38),(16,43,22,37),(17,42,23,48),(18,41,24,47)]])
C2×Dic6 is a maximal subgroup of
C6.SD16 C2.Dic12 C12.47D4 C12⋊2Q8 C42⋊7S3 Dic3.D4 C23.11D6 Dic6⋊C4 C12⋊Q8 D6⋊Q8 C4.D12 C8.D6 C12.48D4 C23.12D6 Dic3⋊Q8 Q8.14D6 C2×S3×Q8 Q8○D12 Q8⋊Dic6
C2×Dic6 is a maximal quotient of
C12⋊2Q8 C12.6Q8 Dic3.D4 C12⋊Q8 C4.Dic6 C12.48D4
Matrix representation of C2×Dic6 ►in GL5(𝔽13)
12 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 |
0 | 0 | 10 | 0 | 0 |
0 | 0 | 0 | 12 | 5 |
0 | 0 | 0 | 10 | 1 |
12 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 6 | 2 |
0 | 0 | 0 | 1 | 7 |
G:=sub<GL(5,GF(13))| [12,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,4,0,0,0,0,0,10,0,0,0,0,0,12,10,0,0,0,5,1],[12,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,6,1,0,0,0,2,7] >;
C2×Dic6 in GAP, Magma, Sage, TeX
C_2\times {\rm Dic}_6
% in TeX
G:=Group("C2xDic6");
// GroupNames label
G:=SmallGroup(48,34);
// by ID
G=gap.SmallGroup(48,34);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-3,40,182,42,804]);
// Polycyclic
G:=Group<a,b,c|a^2=b^12=1,c^2=b^6,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export
Subgroup lattice of C2×Dic6 in TeX
Character table of C2×Dic6 in TeX