Extensions 1→N→G→Q→1 with N=C5 and Q=Dic3.Q8

Direct product G=N×Q with N=C5 and Q=Dic3.Q8
dρLabelID
C5×Dic3.Q8480C5xDic3.Q8480,768

Semidirect products G=N:Q with N=C5 and Q=Dic3.Q8
extensionφ:Q→Aut NdρLabelID
C51(Dic3.Q8) = Dic3.3Dic10φ: Dic3.Q8/C4×Dic3C2 ⊆ Aut C5480C5:1(Dic3.Q8)480,455
C52(Dic3.Q8) = Dic15.2Q8φ: Dic3.Q8/Dic3⋊C4C2 ⊆ Aut C5480C5:2(Dic3.Q8)480,415
C53(Dic3.Q8) = Dic3.Dic10φ: Dic3.Q8/Dic3⋊C4C2 ⊆ Aut C5480C5:3(Dic3.Q8)480,419
C54(Dic3.Q8) = Dic3.2Dic10φ: Dic3.Q8/Dic3⋊C4C2 ⊆ Aut C5480C5:4(Dic3.Q8)480,422
C55(Dic3.Q8) = Dic15.4Q8φ: Dic3.Q8/Dic3⋊C4C2 ⊆ Aut C5480C5:5(Dic3.Q8)480,458
C56(Dic3.Q8) = Dic15.Q8φ: Dic3.Q8/C4⋊Dic3C2 ⊆ Aut C5480C5:6(Dic3.Q8)480,412
C57(Dic3.Q8) = Dic15.3Q8φ: Dic3.Q8/C3×C4⋊C4C2 ⊆ Aut C5480C5:7(Dic3.Q8)480,854


׿
×
𝔽