Copied to
clipboard

G = D242order 484 = 22·112

Dihedral group

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: D242, C2×D121, C242⋊C2, C121⋊C22, C11.D22, C22.2D11, sometimes denoted D484 or Dih242 or Dih484, SmallGroup(484,3)

Series: Derived Chief Lower central Upper central

C1C121 — D242
C1C11C121D121 — D242
C121 — D242
C1C2

Generators and relations for D242
 G = < a,b | a242=b2=1, bab=a-1 >

121C2
121C2
121C22
11D11
11D11
11D22

Smallest permutation representation of D242
On 242 points
Generators in S242
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242)
(1 242)(2 241)(3 240)(4 239)(5 238)(6 237)(7 236)(8 235)(9 234)(10 233)(11 232)(12 231)(13 230)(14 229)(15 228)(16 227)(17 226)(18 225)(19 224)(20 223)(21 222)(22 221)(23 220)(24 219)(25 218)(26 217)(27 216)(28 215)(29 214)(30 213)(31 212)(32 211)(33 210)(34 209)(35 208)(36 207)(37 206)(38 205)(39 204)(40 203)(41 202)(42 201)(43 200)(44 199)(45 198)(46 197)(47 196)(48 195)(49 194)(50 193)(51 192)(52 191)(53 190)(54 189)(55 188)(56 187)(57 186)(58 185)(59 184)(60 183)(61 182)(62 181)(63 180)(64 179)(65 178)(66 177)(67 176)(68 175)(69 174)(70 173)(71 172)(72 171)(73 170)(74 169)(75 168)(76 167)(77 166)(78 165)(79 164)(80 163)(81 162)(82 161)(83 160)(84 159)(85 158)(86 157)(87 156)(88 155)(89 154)(90 153)(91 152)(92 151)(93 150)(94 149)(95 148)(96 147)(97 146)(98 145)(99 144)(100 143)(101 142)(102 141)(103 140)(104 139)(105 138)(106 137)(107 136)(108 135)(109 134)(110 133)(111 132)(112 131)(113 130)(114 129)(115 128)(116 127)(117 126)(118 125)(119 124)(120 123)(121 122)

G:=sub<Sym(242)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242), (1,242)(2,241)(3,240)(4,239)(5,238)(6,237)(7,236)(8,235)(9,234)(10,233)(11,232)(12,231)(13,230)(14,229)(15,228)(16,227)(17,226)(18,225)(19,224)(20,223)(21,222)(22,221)(23,220)(24,219)(25,218)(26,217)(27,216)(28,215)(29,214)(30,213)(31,212)(32,211)(33,210)(34,209)(35,208)(36,207)(37,206)(38,205)(39,204)(40,203)(41,202)(42,201)(43,200)(44,199)(45,198)(46,197)(47,196)(48,195)(49,194)(50,193)(51,192)(52,191)(53,190)(54,189)(55,188)(56,187)(57,186)(58,185)(59,184)(60,183)(61,182)(62,181)(63,180)(64,179)(65,178)(66,177)(67,176)(68,175)(69,174)(70,173)(71,172)(72,171)(73,170)(74,169)(75,168)(76,167)(77,166)(78,165)(79,164)(80,163)(81,162)(82,161)(83,160)(84,159)(85,158)(86,157)(87,156)(88,155)(89,154)(90,153)(91,152)(92,151)(93,150)(94,149)(95,148)(96,147)(97,146)(98,145)(99,144)(100,143)(101,142)(102,141)(103,140)(104,139)(105,138)(106,137)(107,136)(108,135)(109,134)(110,133)(111,132)(112,131)(113,130)(114,129)(115,128)(116,127)(117,126)(118,125)(119,124)(120,123)(121,122)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242), (1,242)(2,241)(3,240)(4,239)(5,238)(6,237)(7,236)(8,235)(9,234)(10,233)(11,232)(12,231)(13,230)(14,229)(15,228)(16,227)(17,226)(18,225)(19,224)(20,223)(21,222)(22,221)(23,220)(24,219)(25,218)(26,217)(27,216)(28,215)(29,214)(30,213)(31,212)(32,211)(33,210)(34,209)(35,208)(36,207)(37,206)(38,205)(39,204)(40,203)(41,202)(42,201)(43,200)(44,199)(45,198)(46,197)(47,196)(48,195)(49,194)(50,193)(51,192)(52,191)(53,190)(54,189)(55,188)(56,187)(57,186)(58,185)(59,184)(60,183)(61,182)(62,181)(63,180)(64,179)(65,178)(66,177)(67,176)(68,175)(69,174)(70,173)(71,172)(72,171)(73,170)(74,169)(75,168)(76,167)(77,166)(78,165)(79,164)(80,163)(81,162)(82,161)(83,160)(84,159)(85,158)(86,157)(87,156)(88,155)(89,154)(90,153)(91,152)(92,151)(93,150)(94,149)(95,148)(96,147)(97,146)(98,145)(99,144)(100,143)(101,142)(102,141)(103,140)(104,139)(105,138)(106,137)(107,136)(108,135)(109,134)(110,133)(111,132)(112,131)(113,130)(114,129)(115,128)(116,127)(117,126)(118,125)(119,124)(120,123)(121,122) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242)], [(1,242),(2,241),(3,240),(4,239),(5,238),(6,237),(7,236),(8,235),(9,234),(10,233),(11,232),(12,231),(13,230),(14,229),(15,228),(16,227),(17,226),(18,225),(19,224),(20,223),(21,222),(22,221),(23,220),(24,219),(25,218),(26,217),(27,216),(28,215),(29,214),(30,213),(31,212),(32,211),(33,210),(34,209),(35,208),(36,207),(37,206),(38,205),(39,204),(40,203),(41,202),(42,201),(43,200),(44,199),(45,198),(46,197),(47,196),(48,195),(49,194),(50,193),(51,192),(52,191),(53,190),(54,189),(55,188),(56,187),(57,186),(58,185),(59,184),(60,183),(61,182),(62,181),(63,180),(64,179),(65,178),(66,177),(67,176),(68,175),(69,174),(70,173),(71,172),(72,171),(73,170),(74,169),(75,168),(76,167),(77,166),(78,165),(79,164),(80,163),(81,162),(82,161),(83,160),(84,159),(85,158),(86,157),(87,156),(88,155),(89,154),(90,153),(91,152),(92,151),(93,150),(94,149),(95,148),(96,147),(97,146),(98,145),(99,144),(100,143),(101,142),(102,141),(103,140),(104,139),(105,138),(106,137),(107,136),(108,135),(109,134),(110,133),(111,132),(112,131),(113,130),(114,129),(115,128),(116,127),(117,126),(118,125),(119,124),(120,123),(121,122)])

124 conjugacy classes

class 1 2A2B2C11A···11E22A···22E121A···121BC242A···242BC
order122211···1122···22121···121242···242
size111211212···22···22···22···2

124 irreducible representations

dim1112222
type+++++++
imageC1C2C2D11D22D121D242
kernelD242D121C242C22C11C2C1
# reps121555555

Matrix representation of D242 in GL3(𝔽727) generated by

72600
045183
0544209
,
100
0235717
0288492
G:=sub<GL(3,GF(727))| [726,0,0,0,45,544,0,183,209],[1,0,0,0,235,288,0,717,492] >;

D242 in GAP, Magma, Sage, TeX

D_{242}
% in TeX

G:=Group("D242");
// GroupNames label

G:=SmallGroup(484,3);
// by ID

G=gap.SmallGroup(484,3);
# by ID

G:=PCGroup([4,-2,-2,-11,-11,1010,1330,7043]);
// Polycyclic

G:=Group<a,b|a^242=b^2=1,b*a*b=a^-1>;
// generators/relations

Export

Subgroup lattice of D242 in TeX

׿
×
𝔽