# Extensions 1→N→G→Q→1 with N=C9 and Q=C2×3- 1+2

Direct product G=N×Q with N=C9 and Q=C2×3- 1+2
dρLabelID
C18×3- 1+2162C18xES-(3,1)486,195

Semidirect products G=N:Q with N=C9 and Q=C2×3- 1+2
extensionφ:Q→Aut NdρLabelID
C91(C2×3- 1+2) = C927C6φ: C2×3- 1+2/C9C6 ⊆ Aut C9546C9:1(C2xES-(3,1))486,109
C92(C2×3- 1+2) = C928C6φ: C2×3- 1+2/C9C6 ⊆ Aut C9186C9:2(C2xES-(3,1))486,110
C93(C2×3- 1+2) = D9⋊3- 1+2φ: C2×3- 1+2/C32C6 ⊆ Aut C9546C9:3(C2xES-(3,1))486,108
C94(C2×3- 1+2) = C2×C927C3φ: C2×3- 1+2/C18C3 ⊆ Aut C9162C9:4(C2xES-(3,1))486,202
C95(C2×3- 1+2) = C2×C929C3φ: C2×3- 1+2/C18C3 ⊆ Aut C9162C9:5(C2xES-(3,1))486,206
C96(C2×3- 1+2) = C2×C9⋊3- 1+2φ: C2×3- 1+2/C3×C6C3 ⊆ Aut C9162C9:6(C2xES-(3,1))486,200
C97(C2×3- 1+2) = D9×3- 1+2φ: C2×3- 1+2/3- 1+2C2 ⊆ Aut C9546C9:7(C2xES-(3,1))486,101

Non-split extensions G=N.Q with N=C9 and Q=C2×3- 1+2
extensionφ:Q→Aut NdρLabelID
C9.1(C2×3- 1+2) = C2×C9.5He3φ: C2×3- 1+2/C18C3 ⊆ Aut C91623C9.1(C2xES-(3,1))486,79
C9.2(C2×3- 1+2) = C2×C9.6He3φ: C2×3- 1+2/C18C3 ⊆ Aut C91623C9.2(C2xES-(3,1))486,80
C9.3(C2×3- 1+2) = C2×C928C3φ: C2×3- 1+2/C18C3 ⊆ Aut C9162C9.3(C2xES-(3,1))486,205
C9.4(C2×3- 1+2) = C2×C9.4He3φ: C2×3- 1+2/C3×C6C3 ⊆ Aut C9543C9.4(C2xES-(3,1))486,76
C9.5(C2×3- 1+2) = C2×C27⋊C9φ: C2×3- 1+2/C3×C6C3 ⊆ Aut C9549C9.5(C2xES-(3,1))486,82
C9.6(C2×3- 1+2) = C2×C32⋊C27central extension (φ=1)162C9.6(C2xES-(3,1))486,72
C9.7(C2×3- 1+2) = C2×C9⋊C27central extension (φ=1)486C9.7(C2xES-(3,1))486,81

׿
×
𝔽