Extensions 1→N→G→Q→1 with N=C9 and Q=C2x3- 1+2

Direct product G=NxQ with N=C9 and Q=C2x3- 1+2
dρLabelID
C18x3- 1+2162C18xES-(3,1)486,195

Semidirect products G=N:Q with N=C9 and Q=C2x3- 1+2
extensionφ:Q→Aut NdρLabelID
C9:1(C2x3- 1+2) = C92:7C6φ: C2x3- 1+2/C9C6 ⊆ Aut C9546C9:1(C2xES-(3,1))486,109
C9:2(C2x3- 1+2) = C92:8C6φ: C2x3- 1+2/C9C6 ⊆ Aut C9186C9:2(C2xES-(3,1))486,110
C9:3(C2x3- 1+2) = D9:3- 1+2φ: C2x3- 1+2/C32C6 ⊆ Aut C9546C9:3(C2xES-(3,1))486,108
C9:4(C2x3- 1+2) = C2xC92:7C3φ: C2x3- 1+2/C18C3 ⊆ Aut C9162C9:4(C2xES-(3,1))486,202
C9:5(C2x3- 1+2) = C2xC92:9C3φ: C2x3- 1+2/C18C3 ⊆ Aut C9162C9:5(C2xES-(3,1))486,206
C9:6(C2x3- 1+2) = C2xC9:3- 1+2φ: C2x3- 1+2/C3xC6C3 ⊆ Aut C9162C9:6(C2xES-(3,1))486,200
C9:7(C2x3- 1+2) = D9x3- 1+2φ: C2x3- 1+2/3- 1+2C2 ⊆ Aut C9546C9:7(C2xES-(3,1))486,101

Non-split extensions G=N.Q with N=C9 and Q=C2x3- 1+2
extensionφ:Q→Aut NdρLabelID
C9.1(C2x3- 1+2) = C2xC9.5He3φ: C2x3- 1+2/C18C3 ⊆ Aut C91623C9.1(C2xES-(3,1))486,79
C9.2(C2x3- 1+2) = C2xC9.6He3φ: C2x3- 1+2/C18C3 ⊆ Aut C91623C9.2(C2xES-(3,1))486,80
C9.3(C2x3- 1+2) = C2xC92:8C3φ: C2x3- 1+2/C18C3 ⊆ Aut C9162C9.3(C2xES-(3,1))486,205
C9.4(C2x3- 1+2) = C2xC9.4He3φ: C2x3- 1+2/C3xC6C3 ⊆ Aut C9543C9.4(C2xES-(3,1))486,76
C9.5(C2x3- 1+2) = C2xC27:C9φ: C2x3- 1+2/C3xC6C3 ⊆ Aut C9549C9.5(C2xES-(3,1))486,82
C9.6(C2x3- 1+2) = C2xC32:C27central extension (φ=1)162C9.6(C2xES-(3,1))486,72
C9.7(C2x3- 1+2) = C2xC9:C27central extension (φ=1)486C9.7(C2xES-(3,1))486,81

׿
x
:
Z
F
o
wr
Q
<