Extensions 1→N→G→Q→1 with N=C3 and Q=He3.C6

Direct product G=N×Q with N=C3 and Q=He3.C6
dρLabelID
C3×He3.C681C3xHe3.C6486,118

Semidirect products G=N:Q with N=C3 and Q=He3.C6
extensionφ:Q→Aut NdρLabelID
C3⋊(He3.C6) = He3.C3⋊S3φ: He3.C6/He3.C3C2 ⊆ Aut C3546C3:(He3.C6)486,169

Non-split extensions G=N.Q with N=C3 and Q=He3.C6
extensionφ:Q→Aut NdρLabelID
C3.1(He3.C6) = C32⋊C9⋊S3φ: He3.C6/He3.C3C2 ⊆ Aut C3186C3.1(He3.C6)486,7
C3.2(He3.C6) = C33.(C3×S3)φ: He3.C6/He3.C3C2 ⊆ Aut C3546C3.2(He3.C6)486,11
C3.3(He3.C6) = C322D9.C3φ: He3.C6/He3.C3C2 ⊆ Aut C3546C3.3(He3.C6)486,12
C3.4(He3.C6) = (C3×C9)⋊D9φ: He3.C6/He3.C3C2 ⊆ Aut C3546C3.4(He3.C6)486,21
C3.5(He3.C6) = He3⋊C18central extension (φ=1)81C3.5(He3.C6)486,24

׿
×
𝔽