d | ρ | Label | ID | ||
---|---|---|---|---|---|
C3×He3.C6 | 81 | C3xHe3.C6 | 486,118 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
C3⋊(He3.C6) = He3.C3⋊S3 | φ: He3.C6/He3.C3 → C2 ⊆ Aut C3 | 54 | 6 | C3:(He3.C6) | 486,169 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
C3.1(He3.C6) = C32⋊C9⋊S3 | φ: He3.C6/He3.C3 → C2 ⊆ Aut C3 | 18 | 6 | C3.1(He3.C6) | 486,7 |
C3.2(He3.C6) = C33.(C3×S3) | φ: He3.C6/He3.C3 → C2 ⊆ Aut C3 | 54 | 6 | C3.2(He3.C6) | 486,11 |
C3.3(He3.C6) = C32⋊2D9.C3 | φ: He3.C6/He3.C3 → C2 ⊆ Aut C3 | 54 | 6 | C3.3(He3.C6) | 486,12 |
C3.4(He3.C6) = (C3×C9)⋊D9 | φ: He3.C6/He3.C3 → C2 ⊆ Aut C3 | 54 | 6 | C3.4(He3.C6) | 486,21 |
C3.5(He3.C6) = He3⋊C18 | central extension (φ=1) | 81 | C3.5(He3.C6) | 486,24 |