Copied to
clipboard

G = (C3×C9)⋊D9order 486 = 2·35

2nd semidirect product of C3×C9 and D9 acting via D9/C3=S3

non-abelian, supersoluble, monomial

Aliases: (C3×C9)⋊2D9, C32⋊C9.5C6, (C32×C9).2S3, C32.6(C3×D9), C32.3(C9⋊C6), C33.27(C3×S3), C322D9.4C3, C3.7(C32⋊D9), C32.19He32C2, C32.37(C32⋊C6), C3.4(He3.C6), SmallGroup(486,21)

Series: Derived Chief Lower central Upper central

C1C3C32⋊C9 — (C3×C9)⋊D9
C1C3C32C33C32⋊C9C32.19He3 — (C3×C9)⋊D9
C32⋊C9 — (C3×C9)⋊D9
C1C3

Generators and relations for (C3×C9)⋊D9
 G = < a,b,c,d | a3=b9=c9=d2=1, ab=ba, cac-1=ab6, dad=a-1b6, cbc-1=a-1b, bd=db, dcd=c-1 >

27C2
2C3
3C3
3C3
3C3
9S3
9S3
9S3
9S3
27C6
3C32
3C9
6C9
6C32
9C9
18C9
3C3⋊S3
9C3×S3
9D9
9C3×S3
9C3×S3
9C3×S3
27C18
2C3×C9
3C3×C9
3C3×C9
3C3×C9
3C3×C9
6C3×C9
3C3×C3⋊S3
9S3×C9
9S3×C9
9S3×C9
9C3×D9
9S3×C9
2C32⋊C9
3C9×C3⋊S3

Smallest permutation representation of (C3×C9)⋊D9
On 54 points
Generators in S54
(10 13 16)(11 14 17)(12 15 18)(19 25 22)(20 26 23)(21 27 24)(28 31 34)(29 32 35)(30 33 36)(37 43 40)(38 44 41)(39 45 42)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)
(1 42 35 4 45 29 7 39 32)(2 43 33 5 37 36 8 40 30)(3 44 31 6 38 34 9 41 28)(10 54 25 16 51 22 13 48 19)(11 49 20 17 46 26 14 52 23)(12 53 24 18 50 21 15 47 27)
(1 20)(2 21)(3 22)(4 23)(5 24)(6 25)(7 26)(8 27)(9 19)(10 34)(11 35)(12 36)(13 28)(14 29)(15 30)(16 31)(17 32)(18 33)(37 53)(38 54)(39 46)(40 47)(41 48)(42 49)(43 50)(44 51)(45 52)

G:=sub<Sym(54)| (10,13,16)(11,14,17)(12,15,18)(19,25,22)(20,26,23)(21,27,24)(28,31,34)(29,32,35)(30,33,36)(37,43,40)(38,44,41)(39,45,42), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,42,35,4,45,29,7,39,32)(2,43,33,5,37,36,8,40,30)(3,44,31,6,38,34,9,41,28)(10,54,25,16,51,22,13,48,19)(11,49,20,17,46,26,14,52,23)(12,53,24,18,50,21,15,47,27), (1,20)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,19)(10,34)(11,35)(12,36)(13,28)(14,29)(15,30)(16,31)(17,32)(18,33)(37,53)(38,54)(39,46)(40,47)(41,48)(42,49)(43,50)(44,51)(45,52)>;

G:=Group( (10,13,16)(11,14,17)(12,15,18)(19,25,22)(20,26,23)(21,27,24)(28,31,34)(29,32,35)(30,33,36)(37,43,40)(38,44,41)(39,45,42), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54), (1,42,35,4,45,29,7,39,32)(2,43,33,5,37,36,8,40,30)(3,44,31,6,38,34,9,41,28)(10,54,25,16,51,22,13,48,19)(11,49,20,17,46,26,14,52,23)(12,53,24,18,50,21,15,47,27), (1,20)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,19)(10,34)(11,35)(12,36)(13,28)(14,29)(15,30)(16,31)(17,32)(18,33)(37,53)(38,54)(39,46)(40,47)(41,48)(42,49)(43,50)(44,51)(45,52) );

G=PermutationGroup([[(10,13,16),(11,14,17),(12,15,18),(19,25,22),(20,26,23),(21,27,24),(28,31,34),(29,32,35),(30,33,36),(37,43,40),(38,44,41),(39,45,42)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54)], [(1,42,35,4,45,29,7,39,32),(2,43,33,5,37,36,8,40,30),(3,44,31,6,38,34,9,41,28),(10,54,25,16,51,22,13,48,19),(11,49,20,17,46,26,14,52,23),(12,53,24,18,50,21,15,47,27)], [(1,20),(2,21),(3,22),(4,23),(5,24),(6,25),(7,26),(8,27),(9,19),(10,34),(11,35),(12,36),(13,28),(14,29),(15,30),(16,31),(17,32),(18,33),(37,53),(38,54),(39,46),(40,47),(41,48),(42,49),(43,50),(44,51),(45,52)]])

39 conjugacy classes

class 1  2 3A3B3C3D3E3F3G3H6A6B9A···9F9G···9L9M···9U18A···18F
order1233333333669···99···99···918···18
size1271122266627273···36···618···1827···27

39 irreducible representations

dim111122223666
type++++++
imageC1C2C3C6S3D9C3×S3C3×D9He3.C6C32⋊C6C9⋊C6(C3×C9)⋊D9
kernel(C3×C9)⋊D9C32.19He3C322D9C32⋊C9C32×C9C3×C9C33C32C3C32C32C1
# reps1122132612126

Matrix representation of (C3×C9)⋊D9 in GL5(𝔽19)

10000
01000
001100
00010
00007
,
10000
01000
001700
00050
00005
,
174000
1811000
000016
00500
00050
,
02000
100000
001800
000015
000140

G:=sub<GL(5,GF(19))| [1,0,0,0,0,0,1,0,0,0,0,0,11,0,0,0,0,0,1,0,0,0,0,0,7],[1,0,0,0,0,0,1,0,0,0,0,0,17,0,0,0,0,0,5,0,0,0,0,0,5],[17,18,0,0,0,4,11,0,0,0,0,0,0,5,0,0,0,0,0,5,0,0,16,0,0],[0,10,0,0,0,2,0,0,0,0,0,0,18,0,0,0,0,0,0,14,0,0,0,15,0] >;

(C3×C9)⋊D9 in GAP, Magma, Sage, TeX

(C_3\times C_9)\rtimes D_9
% in TeX

G:=Group("(C3xC9):D9");
// GroupNames label

G:=SmallGroup(486,21);
// by ID

G=gap.SmallGroup(486,21);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,979,1190,224,338,8643,1383,3244]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^9=c^9=d^2=1,a*b=b*a,c*a*c^-1=a*b^6,d*a*d=a^-1*b^6,c*b*c^-1=a^-1*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of (C3×C9)⋊D9 in TeX

׿
×
𝔽