Extensions 1→N→G→Q→1 with N=C9 and Q=C3×C3⋊S3

Direct product G=N×Q with N=C9 and Q=C3×C3⋊S3
dρLabelID
C3⋊S3×C3×C954C3:S3xC3xC9486,228

Semidirect products G=N:Q with N=C9 and Q=C3×C3⋊S3
extensionφ:Q→Aut NdρLabelID
C9⋊(C3×C3⋊S3) = C34.11S3φ: C3×C3⋊S3/C32C6 ⊆ Aut C981C9:(C3xC3:S3)486,244
C92(C3×C3⋊S3) = C3⋊S3×3- 1+2φ: C3×C3⋊S3/C3⋊S3C3 ⊆ Aut C954C9:2(C3xC3:S3)486,233
C93(C3×C3⋊S3) = C3×C324D9φ: C3×C3⋊S3/C33C2 ⊆ Aut C9162C9:3(C3xC3:S3)486,240

Non-split extensions G=N.Q with N=C9 and Q=C3×C3⋊S3
extensionφ:Q→Aut NdρLabelID
C9.(C3×C3⋊S3) = C9○He33S3φ: C3×C3⋊S3/C32C6 ⊆ Aut C981C9.(C3xC3:S3)486,245
C9.2(C3×C3⋊S3) = 3- 1+42C2φ: C3×C3⋊S3/C3⋊S3C3 ⊆ Aut C9279C9.2(C3xC3:S3)486,239
C9.3(C3×C3⋊S3) = C3×C27⋊S3φ: C3×C3⋊S3/C33C2 ⊆ Aut C9162C9.3(C3xC3:S3)486,160
C9.4(C3×C3⋊S3) = C33.5D9φ: C3×C3⋊S3/C33C2 ⊆ Aut C981C9.4(C3xC3:S3)486,162
C9.5(C3×C3⋊S3) = He3.5D9φ: C3×C3⋊S3/C33C2 ⊆ Aut C9816+C9.5(C3xC3:S3)486,163
C9.6(C3×C3⋊S3) = C3⋊S3×C27central extension (φ=1)162C9.6(C3xC3:S3)486,161
C9.7(C3×C3⋊S3) = He3.5C18central extension (φ=1)813C9.7(C3xC3:S3)486,164
C9.8(C3×C3⋊S3) = C3×He3.4C6central extension (φ=1)81C9.8(C3xC3:S3)486,235

׿
×
𝔽