Copied to
clipboard

G = He3.5D9order 486 = 2·35

The non-split extension by He3 of D9 acting via D9/C9=C2

metabelian, supersoluble, monomial

Aliases: He3.5D9, 3- 1+2.3D9, C9.(C3×D9), C27⋊C35S3, C27⋊S35C3, (C3×C27)⋊7S3, (C3×C27)⋊6C6, C27.3(C3×S3), C27○He31C2, C9○He3.5S3, C32.4(C3×D9), C32.6(C9⋊S3), C9.5(C3×C3⋊S3), C3.8(C3×C9⋊S3), (C3×C9).42(C3×S3), (C3×C9).13(C3⋊S3), SmallGroup(486,163)

Series: Derived Chief Lower central Upper central

C1C3×C27 — He3.5D9
C1C3C9C3×C9C3×C27C27○He3 — He3.5D9
C3×C27 — He3.5D9
C1

Generators and relations for He3.5D9
 G = < a,b,c,d,e | a3=b3=c3=e2=1, d9=b, ab=ba, cac-1=ab-1, ad=da, eae=a-1, bc=cb, bd=db, ebe=b-1, cd=dc, ce=ec, ede=b-1d8 >

Subgroups: 458 in 62 conjugacy classes, 23 normal (15 characteristic)
C1, C2, C3, C3, S3, C6, C9, C9, C9, C32, C32, D9, C3×S3, C3⋊S3, C27, C27, C27, C3×C9, C3×C9, He3, 3- 1+2, 3- 1+2, D27, C3×D9, C32⋊C6, C9⋊C6, C9⋊S3, C3×C27, C3×C27, C27⋊C3, C27⋊C3, C9○He3, C3×D27, C27⋊C6, C27⋊S3, He3.4S3, C27○He3, He3.5D9
Quotients: C1, C2, C3, S3, C6, D9, C3×S3, C3⋊S3, C3×D9, C9⋊S3, C3×C3⋊S3, C3×C9⋊S3, He3.5D9

Smallest permutation representation of He3.5D9
On 81 points
Generators in S81
(1 55 43)(2 56 44)(3 57 45)(4 58 46)(5 59 47)(6 60 48)(7 61 49)(8 62 50)(9 63 51)(10 64 52)(11 65 53)(12 66 54)(13 67 28)(14 68 29)(15 69 30)(16 70 31)(17 71 32)(18 72 33)(19 73 34)(20 74 35)(21 75 36)(22 76 37)(23 77 38)(24 78 39)(25 79 40)(26 80 41)(27 81 42)
(1 10 19)(2 11 20)(3 12 21)(4 13 22)(5 14 23)(6 15 24)(7 16 25)(8 17 26)(9 18 27)(28 37 46)(29 38 47)(30 39 48)(31 40 49)(32 41 50)(33 42 51)(34 43 52)(35 44 53)(36 45 54)(55 64 73)(56 65 74)(57 66 75)(58 67 76)(59 68 77)(60 69 78)(61 70 79)(62 71 80)(63 72 81)
(28 46 37)(29 47 38)(30 48 39)(31 49 40)(32 50 41)(33 51 42)(34 52 43)(35 53 44)(36 54 45)(55 64 73)(56 65 74)(57 66 75)(58 67 76)(59 68 77)(60 69 78)(61 70 79)(62 71 80)(63 72 81)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81)
(1 18)(2 17)(3 16)(4 15)(5 14)(6 13)(7 12)(8 11)(9 10)(19 27)(20 26)(21 25)(22 24)(28 60)(29 59)(30 58)(31 57)(32 56)(33 55)(34 81)(35 80)(36 79)(37 78)(38 77)(39 76)(40 75)(41 74)(42 73)(43 72)(44 71)(45 70)(46 69)(47 68)(48 67)(49 66)(50 65)(51 64)(52 63)(53 62)(54 61)

G:=sub<Sym(81)| (1,55,43)(2,56,44)(3,57,45)(4,58,46)(5,59,47)(6,60,48)(7,61,49)(8,62,50)(9,63,51)(10,64,52)(11,65,53)(12,66,54)(13,67,28)(14,68,29)(15,69,30)(16,70,31)(17,71,32)(18,72,33)(19,73,34)(20,74,35)(21,75,36)(22,76,37)(23,77,38)(24,78,39)(25,79,40)(26,80,41)(27,81,42), (1,10,19)(2,11,20)(3,12,21)(4,13,22)(5,14,23)(6,15,24)(7,16,25)(8,17,26)(9,18,27)(28,37,46)(29,38,47)(30,39,48)(31,40,49)(32,41,50)(33,42,51)(34,43,52)(35,44,53)(36,45,54)(55,64,73)(56,65,74)(57,66,75)(58,67,76)(59,68,77)(60,69,78)(61,70,79)(62,71,80)(63,72,81), (28,46,37)(29,47,38)(30,48,39)(31,49,40)(32,50,41)(33,51,42)(34,52,43)(35,53,44)(36,54,45)(55,64,73)(56,65,74)(57,66,75)(58,67,76)(59,68,77)(60,69,78)(61,70,79)(62,71,80)(63,72,81), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)(19,27)(20,26)(21,25)(22,24)(28,60)(29,59)(30,58)(31,57)(32,56)(33,55)(34,81)(35,80)(36,79)(37,78)(38,77)(39,76)(40,75)(41,74)(42,73)(43,72)(44,71)(45,70)(46,69)(47,68)(48,67)(49,66)(50,65)(51,64)(52,63)(53,62)(54,61)>;

G:=Group( (1,55,43)(2,56,44)(3,57,45)(4,58,46)(5,59,47)(6,60,48)(7,61,49)(8,62,50)(9,63,51)(10,64,52)(11,65,53)(12,66,54)(13,67,28)(14,68,29)(15,69,30)(16,70,31)(17,71,32)(18,72,33)(19,73,34)(20,74,35)(21,75,36)(22,76,37)(23,77,38)(24,78,39)(25,79,40)(26,80,41)(27,81,42), (1,10,19)(2,11,20)(3,12,21)(4,13,22)(5,14,23)(6,15,24)(7,16,25)(8,17,26)(9,18,27)(28,37,46)(29,38,47)(30,39,48)(31,40,49)(32,41,50)(33,42,51)(34,43,52)(35,44,53)(36,45,54)(55,64,73)(56,65,74)(57,66,75)(58,67,76)(59,68,77)(60,69,78)(61,70,79)(62,71,80)(63,72,81), (28,46,37)(29,47,38)(30,48,39)(31,49,40)(32,50,41)(33,51,42)(34,52,43)(35,53,44)(36,54,45)(55,64,73)(56,65,74)(57,66,75)(58,67,76)(59,68,77)(60,69,78)(61,70,79)(62,71,80)(63,72,81), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81), (1,18)(2,17)(3,16)(4,15)(5,14)(6,13)(7,12)(8,11)(9,10)(19,27)(20,26)(21,25)(22,24)(28,60)(29,59)(30,58)(31,57)(32,56)(33,55)(34,81)(35,80)(36,79)(37,78)(38,77)(39,76)(40,75)(41,74)(42,73)(43,72)(44,71)(45,70)(46,69)(47,68)(48,67)(49,66)(50,65)(51,64)(52,63)(53,62)(54,61) );

G=PermutationGroup([[(1,55,43),(2,56,44),(3,57,45),(4,58,46),(5,59,47),(6,60,48),(7,61,49),(8,62,50),(9,63,51),(10,64,52),(11,65,53),(12,66,54),(13,67,28),(14,68,29),(15,69,30),(16,70,31),(17,71,32),(18,72,33),(19,73,34),(20,74,35),(21,75,36),(22,76,37),(23,77,38),(24,78,39),(25,79,40),(26,80,41),(27,81,42)], [(1,10,19),(2,11,20),(3,12,21),(4,13,22),(5,14,23),(6,15,24),(7,16,25),(8,17,26),(9,18,27),(28,37,46),(29,38,47),(30,39,48),(31,40,49),(32,41,50),(33,42,51),(34,43,52),(35,44,53),(36,45,54),(55,64,73),(56,65,74),(57,66,75),(58,67,76),(59,68,77),(60,69,78),(61,70,79),(62,71,80),(63,72,81)], [(28,46,37),(29,47,38),(30,48,39),(31,49,40),(32,50,41),(33,51,42),(34,52,43),(35,53,44),(36,54,45),(55,64,73),(56,65,74),(57,66,75),(58,67,76),(59,68,77),(60,69,78),(61,70,79),(62,71,80),(63,72,81)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)], [(1,18),(2,17),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(9,10),(19,27),(20,26),(21,25),(22,24),(28,60),(29,59),(30,58),(31,57),(32,56),(33,55),(34,81),(35,80),(36,79),(37,78),(38,77),(39,76),(40,75),(41,74),(42,73),(43,72),(44,71),(45,70),(46,69),(47,68),(48,67),(49,66),(50,65),(51,64),(52,63),(53,62),(54,61)]])

54 conjugacy classes

class 1  2 3A3B3C3D3E3F6A6B9A9B9C9D···9K27A···27I27J···27AG
order12333333669999···927···2727···27
size18123366681812226···62···26···6

54 irreducible representations

dim11112222222226
type++++++++
imageC1C2C3C6S3S3S3C3×S3C3×S3D9D9C3×D9C3×D9He3.5D9
kernelHe3.5D9C27○He3C27⋊S3C3×C27C3×C27C27⋊C3C9○He3C27C3×C9He33- 1+2C9C32C1
# reps112212162361269

Matrix representation of He3.5D9 in GL6(𝔽109)

001000
000100
000010
000001
100000
010000
,
010000
1081080000
000100
0010810800
000001
0000108108
,
100000
010000
0010810800
001000
000001
0000108108
,
92990000
101020000
00929900
001010200
00009299
000010102
,
87290000
51220000
00008729
00005122
00872900
00512200

G:=sub<GL(6,GF(109))| [0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0],[0,108,0,0,0,0,1,108,0,0,0,0,0,0,0,108,0,0,0,0,1,108,0,0,0,0,0,0,0,108,0,0,0,0,1,108],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,108,1,0,0,0,0,108,0,0,0,0,0,0,0,0,108,0,0,0,0,1,108],[92,10,0,0,0,0,99,102,0,0,0,0,0,0,92,10,0,0,0,0,99,102,0,0,0,0,0,0,92,10,0,0,0,0,99,102],[87,51,0,0,0,0,29,22,0,0,0,0,0,0,0,0,87,51,0,0,0,0,29,22,0,0,87,51,0,0,0,0,29,22,0,0] >;

He3.5D9 in GAP, Magma, Sage, TeX

{\rm He}_3._5D_9
% in TeX

G:=Group("He3.5D9");
// GroupNames label

G:=SmallGroup(486,163);
// by ID

G=gap.SmallGroup(486,163);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,1190,824,867,2169,8104,208,11669]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=e^2=1,d^9=b,a*b=b*a,c*a*c^-1=a*b^-1,a*d=d*a,e*a*e=a^-1,b*c=c*b,b*d=d*b,e*b*e=b^-1,c*d=d*c,c*e=e*c,e*d*e=b^-1*d^8>;
// generators/relations

׿
×
𝔽