Extensions 1→N→G→Q→1 with N=C3 and Q=He3.2C6

Direct product G=N×Q with N=C3 and Q=He3.2C6
dρLabelID
C3×He3.2C681C3xHe3.2C6486,121

Semidirect products G=N:Q with N=C3 and Q=He3.2C6
extensionφ:Q→Aut NdρLabelID
C3⋊(He3.2C6) = He3⋊C32S3φ: He3.2C6/He3⋊C3C2 ⊆ Aut C3546C3:(He3.2C6)486,172

Non-split extensions G=N.Q with N=C3 and Q=He3.2C6
extensionφ:Q→Aut NdρLabelID
C3.1(He3.2C6) = C32⋊C9.S3φ: He3.2C6/He3⋊C3C2 ⊆ Aut C3186C3.1(He3.2C6)486,5
C3.2(He3.2C6) = (C3×He3).C6φ: He3.2C6/He3⋊C3C2 ⊆ Aut C3546C3.2(He3.2C6)486,9
C3.3(He3.2C6) = C32⋊C9.C6φ: He3.2C6/He3⋊C3C2 ⊆ Aut C3546C3.3(He3.2C6)486,10
C3.4(He3.2C6) = (C3×C9)⋊3D9φ: He3.2C6/He3⋊C3C2 ⊆ Aut C3546C3.4(He3.2C6)486,23
C3.5(He3.2C6) = C92⋊S3φ: He3.2C6/He3⋊C3C2 ⊆ Aut C3276+C3.5(He3.2C6)486,36
C3.6(He3.2C6) = C92.S3φ: He3.2C6/He3⋊C3C2 ⊆ Aut C3276+C3.6(He3.2C6)486,38
C3.7(He3.2C6) = C9⋊C9.S3φ: He3.2C6/He3⋊C3C2 ⊆ Aut C32718+C3.7(He3.2C6)486,39
C3.8(He3.2C6) = C9⋊C9.3S3φ: He3.2C6/He3⋊C3C2 ⊆ Aut C32718+C3.8(He3.2C6)486,40
C3.9(He3.2C6) = C9⋊C9⋊S3φ: He3.2C6/He3⋊C3C2 ⊆ Aut C32718+C3.9(He3.2C6)486,41
C3.10(He3.2C6) = He3⋊C18central extension (φ=1)81C3.10(He3.2C6)486,24

׿
×
𝔽