Copied to
clipboard

G = C9⋊C9.3S3order 486 = 2·35

3rd non-split extension by C9⋊C9 of S3 acting faithfully

non-abelian, supersoluble, monomial

Aliases: C9⋊C9.3S3, C32.5He3⋊C2, C3.He3.3C6, C32.4(C32⋊C6), C3.8(He3.2C6), 3- 1+2.S3.2C3, (C3×C9).3(C3×S3), SmallGroup(486,40)

Series: Derived Chief Lower central Upper central

C1C32C3.He3 — C9⋊C9.3S3
C1C3C32C3×C9C3.He3C32.5He3 — C9⋊C9.3S3
C3.He3 — C9⋊C9.3S3
C1

Generators and relations for C9⋊C9.3S3
 G = < a,b,c,d | a9=b9=d2=1, c3=a3, bab-1=a7, cac-1=a4b6, dad=a-1, cbc-1=a7b4, bd=db, dcd=a6c2 >

27C2
3C3
9S3
27C6
3C9
9C9
9C9
18C9
3D9
9D9
9C3×S3
27C18
33- 1+2
3C3×C9
63- 1+2
3C3×D9
9S3×C9
9C9⋊C6
2C3.He3
3C9⋊C18

Character table of C9⋊C9.3S3

 class 123A3B3C6A6B9A9B9C9D9E9F9G9H9I9J18A18B18C18D18E18F
 size 127233272799999918545454272727272727
ρ111111111111111111111111    trivial
ρ21-1111-1-11111111111-1-1-1-1-1-1    linear of order 2
ρ31-1111-1-1ζ3ζ32ζ3ζ32ζ32ζ311ζ3ζ32ζ65ζ6ζ6ζ65ζ65ζ6    linear of order 6
ρ41111111ζ32ζ3ζ32ζ3ζ3ζ3211ζ32ζ3ζ32ζ3ζ3ζ32ζ32ζ3    linear of order 3
ρ51-1111-1-1ζ32ζ3ζ32ζ3ζ3ζ3211ζ32ζ3ζ6ζ65ζ65ζ6ζ6ζ65    linear of order 6
ρ61111111ζ3ζ32ζ3ζ32ζ32ζ311ζ3ζ32ζ3ζ32ζ32ζ3ζ3ζ32    linear of order 3
ρ720222002222222-1-1-1000000    orthogonal lifted from S3
ρ82022200-1+-3-1--3-1+-3-1--3-1--3-1+-32-1ζ65ζ6000000    complex lifted from C3×S3
ρ92022200-1--3-1+-3-1--3-1+-3-1+-3-1--32-1ζ6ζ65000000    complex lifted from C3×S3
ρ103-13-3-3-3/2-3+3-3/2ζ6ζ65ζ95+2ζ92949ζ98+2ζ959794ζ97+2ζ99892000098949792959    complex lifted from He3.2C6
ρ113-13-3-3-3/2-3+3-3/2ζ6ζ65ζ98+2ζ95ζ97+2ζ998929499794ζ95+2ζ92000092994959897    complex lifted from He3.2C6
ρ12313-3+3-3/2-3-3-3/2ζ3ζ329794ζ98+2ζ95949ζ95+2ζ929892ζ97+2ζ90000ζ9ζ95ζ92ζ97ζ94ζ98    complex lifted from He3.2C6
ρ133-13-3+3-3/2-3-3-3/2ζ65ζ69499892ζ97+2ζ9ζ98+2ζ95ζ95+2ζ929794000097989594992    complex lifted from He3.2C6
ρ14313-3-3-3/2-3+3-3/2ζ32ζ398929794ζ95+2ζ92ζ97+2ζ9949ζ98+2ζ950000ζ95ζ97ζ9ζ98ζ92ζ94    complex lifted from He3.2C6
ρ15313-3+3-3/2-3-3-3/2ζ3ζ329499892ζ97+2ζ9ζ98+2ζ95ζ95+2ζ9297940000ζ97ζ98ζ95ζ94ζ9ζ92    complex lifted from He3.2C6
ρ163-13-3-3-3/2-3+3-3/2ζ6ζ6598929794ζ95+2ζ92ζ97+2ζ9949ζ98+2ζ95000095979989294    complex lifted from He3.2C6
ρ173-13-3+3-3/2-3-3-3/2ζ65ζ6ζ97+2ζ9ζ95+2ζ9297949892ζ98+2ζ95949000094929899795    complex lifted from He3.2C6
ρ183-13-3+3-3/2-3-3-3/2ζ65ζ69794ζ98+2ζ95949ζ95+2ζ929892ζ97+2ζ9000099592979498    complex lifted from He3.2C6
ρ19313-3+3-3/2-3-3-3/2ζ3ζ32ζ97+2ζ9ζ95+2ζ9297949892ζ98+2ζ959490000ζ94ζ92ζ98ζ9ζ97ζ95    complex lifted from He3.2C6
ρ20313-3-3-3/2-3+3-3/2ζ32ζ3ζ95+2ζ92949ζ98+2ζ959794ζ97+2ζ998920000ζ98ζ94ζ97ζ92ζ95ζ9    complex lifted from He3.2C6
ρ21313-3-3-3/2-3+3-3/2ζ32ζ3ζ98+2ζ95ζ97+2ζ998929499794ζ95+2ζ920000ζ92ζ9ζ94ζ95ζ98ζ97    complex lifted from He3.2C6
ρ226066600000000-3000000000    orthogonal lifted from C32⋊C6
ρ23180-900000000000000000000    orthogonal faithful

Permutation representations of C9⋊C9.3S3
On 27 points - transitive group 27T209
Generators in S27
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)
(2 5 8)(3 9 6)(10 14 12 13 17 15 16 11 18)(19 27 23 25 24 20 22 21 26)
(1 17 26 4 11 20 7 14 23)(2 15 24 5 18 27 8 12 21)(3 13 22 6 16 25 9 10 19)
(2 9)(3 8)(4 7)(5 6)(10 21)(11 20)(12 19)(13 27)(14 26)(15 25)(16 24)(17 23)(18 22)

G:=sub<Sym(27)| (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27), (2,5,8)(3,9,6)(10,14,12,13,17,15,16,11,18)(19,27,23,25,24,20,22,21,26), (1,17,26,4,11,20,7,14,23)(2,15,24,5,18,27,8,12,21)(3,13,22,6,16,25,9,10,19), (2,9)(3,8)(4,7)(5,6)(10,21)(11,20)(12,19)(13,27)(14,26)(15,25)(16,24)(17,23)(18,22)>;

G:=Group( (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27), (2,5,8)(3,9,6)(10,14,12,13,17,15,16,11,18)(19,27,23,25,24,20,22,21,26), (1,17,26,4,11,20,7,14,23)(2,15,24,5,18,27,8,12,21)(3,13,22,6,16,25,9,10,19), (2,9)(3,8)(4,7)(5,6)(10,21)(11,20)(12,19)(13,27)(14,26)(15,25)(16,24)(17,23)(18,22) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27)], [(2,5,8),(3,9,6),(10,14,12,13,17,15,16,11,18),(19,27,23,25,24,20,22,21,26)], [(1,17,26,4,11,20,7,14,23),(2,15,24,5,18,27,8,12,21),(3,13,22,6,16,25,9,10,19)], [(2,9),(3,8),(4,7),(5,6),(10,21),(11,20),(12,19),(13,27),(14,26),(15,25),(16,24),(17,23),(18,22)]])

G:=TransitiveGroup(27,209);

Matrix representation of C9⋊C9.3S3 in GL18(ℤ)

001000000000000000
000100000000000000
000010000000000000
000001000000000000
-1-10000000000000000
100000000000000000
00000000-1-100000000
000000001000000000
0000000000-1-1000000
000000000010000000
000000010000000000
000000-1-10000000000
00000000000000-1-100
000000000000001000
0000000000000000-1-1
000000000000000010
000000000000010000
000000000000-1-10000
,
100000000000000000
010000000000000000
000100000000000000
00-1-100000000000000
0000-1-1000000000000
000010000000000000
000000000100000000
00000000-1-100000000
0000000000-1-1000000
000000000010000000
000000-1-10000000000
000000100000000000
000000000000000010
000000000000000001
000000000000100000
000000000000010000
000000000000000100
00000000000000-1-100
,
000000000000-1-10000
000000000000100000
00000000000000-1-100
000000000000001000
0000000000000000-1-1
000000000000000010
100000000000000000
010000000000000000
001000000000000000
000100000000000000
000010000000000000
000001000000000000
000000100000000000
000000010000000000
000000001000000000
000000000100000000
000000000010000000
000000000001000000
,
100000000000000000
-1-10000000000000000
000001000000000000
000010000000000000
000100000000000000
001000000000000000
000000000000-1-10000
000000000000010000
000000000000000010
0000000000000000-1-1
000000000000001000
00000000000000-1-100
000000-1-10000000000
000000010000000000
000000000010000000
0000000000-1-1000000
000000001000000000
00000000-1-100000000

G:=sub<GL(18,Integers())| [0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0],[1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0],[0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0],[1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0] >;

C9⋊C9.3S3 in GAP, Magma, Sage, TeX

C_9\rtimes C_9._3S_3
% in TeX

G:=Group("C9:C9.3S3");
// GroupNames label

G:=SmallGroup(486,40);
// by ID

G=gap.SmallGroup(486,40);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,331,6050,224,500,6051,2169,951,453,1096,11669]);
// Polycyclic

G:=Group<a,b,c,d|a^9=b^9=d^2=1,c^3=a^3,b*a*b^-1=a^7,c*a*c^-1=a^4*b^6,d*a*d=a^-1,c*b*c^-1=a^7*b^4,b*d=d*b,d*c*d=a^6*c^2>;
// generators/relations

Export

Subgroup lattice of C9⋊C9.3S3 in TeX
Character table of C9⋊C9.3S3 in TeX

׿
×
𝔽