Extensions 1→N→G→Q→1 with N=He35S3 and Q=C3

Direct product G=N×Q with N=He35S3 and Q=C3
dρLabelID
C3×He35S354C3xHe3:5S3486,243

Semidirect products G=N:Q with N=He35S3 and Q=C3
extensionφ:Q→Out NdρLabelID
He35S31C3 = C3.C3≀S3φ: C3/C1C3 ⊆ Out He35S3546He3:5S3:1C3486,4
He35S32C3 = C343S3φ: C3/C1C3 ⊆ Out He35S3186He3:5S3:2C3486,145
He35S33C3 = C345S3φ: C3/C1C3 ⊆ Out He35S3186He3:5S3:3C3486,166
He35S34C3 = He3⋊C32S3φ: C3/C1C3 ⊆ Out He35S3546He3:5S3:4C3486,172

Non-split extensions G=N.Q with N=He35S3 and Q=C3
extensionφ:Q→Out NdρLabelID
He35S3.1C3 = C32⋊C9⋊S3φ: C3/C1C3 ⊆ Out He35S3186He3:5S3.1C3486,7
He35S3.2C3 = (C3×He3).C6φ: C3/C1C3 ⊆ Out He35S3546He3:5S3.2C3486,9
He35S3.3C3 = (C32×C9)⋊8S3φ: C3/C1C3 ⊆ Out He35S3546He3:5S3.3C3486,150
He35S3.4C3 = He3.C3⋊S3φ: C3/C1C3 ⊆ Out He35S3546He3:5S3.4C3486,169
He35S3.5C3 = C9○He34S3φ: trivial image546He3:5S3.5C3486,246

׿
×
𝔽