Extensions 1→N→G→Q→1 with N=He3:5S3 and Q=C3

Direct product G=NxQ with N=He3:5S3 and Q=C3
dρLabelID
C3xHe3:5S354C3xHe3:5S3486,243

Semidirect products G=N:Q with N=He3:5S3 and Q=C3
extensionφ:Q→Out NdρLabelID
He3:5S3:1C3 = C3.C3wrS3φ: C3/C1C3 ⊆ Out He3:5S3546He3:5S3:1C3486,4
He3:5S3:2C3 = C34:3S3φ: C3/C1C3 ⊆ Out He3:5S3186He3:5S3:2C3486,145
He3:5S3:3C3 = C34:5S3φ: C3/C1C3 ⊆ Out He3:5S3186He3:5S3:3C3486,166
He3:5S3:4C3 = He3:C3:2S3φ: C3/C1C3 ⊆ Out He3:5S3546He3:5S3:4C3486,172

Non-split extensions G=N.Q with N=He3:5S3 and Q=C3
extensionφ:Q→Out NdρLabelID
He3:5S3.1C3 = C32:C9:S3φ: C3/C1C3 ⊆ Out He3:5S3186He3:5S3.1C3486,7
He3:5S3.2C3 = (C3xHe3).C6φ: C3/C1C3 ⊆ Out He3:5S3546He3:5S3.2C3486,9
He3:5S3.3C3 = (C32xC9):8S3φ: C3/C1C3 ⊆ Out He3:5S3546He3:5S3.3C3486,150
He3:5S3.4C3 = He3.C3:S3φ: C3/C1C3 ⊆ Out He3:5S3546He3:5S3.4C3486,169
He3:5S3.5C3 = C9oHe3:4S3φ: trivial image546He3:5S3.5C3486,246

׿
x
:
Z
F
o
wr
Q
<