non-abelian, supersoluble, monomial
Aliases: He3⋊5S3, C33⋊6S3, (C3×He3)⋊5C2, C3⋊(He3⋊C2), C32⋊2(C3⋊S3), C3.2(C33⋊C2), SmallGroup(162,46)
Series: Derived ►Chief ►Lower central ►Upper central
C3×He3 — He3⋊5S3 |
Generators and relations for He3⋊5S3
G = < a,b,c,d,e | a3=b3=c3=d3=e2=1, dad-1=ab=ba, cac-1=ab-1, eae=a-1, bc=cb, bd=db, be=eb, cd=dc, ece=c-1, ede=d-1 >
Subgroups: 444 in 97 conjugacy classes, 31 normal (6 characteristic)
C1, C2, C3, C3, S3, C6, C32, C32, C32, C3×S3, C3⋊S3, He3, C33, He3⋊C2, C3×C3⋊S3, C3×He3, He3⋊5S3
Quotients: C1, C2, S3, C3⋊S3, He3⋊C2, C33⋊C2, He3⋊5S3
Character table of He3⋊5S3
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | 3G | 3H | 3I | 3J | 3K | 3L | 3M | 3N | 3O | 3P | 3Q | 6A | 6B | |
size | 1 | 27 | 1 | 1 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 27 | 27 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | -1 | 0 | 0 | orthogonal lifted from S3 |
ρ4 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | 2 | -1 | -1 | 0 | 0 | orthogonal lifted from S3 |
ρ5 | 2 | 0 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | 2 | 0 | 0 | orthogonal lifted from S3 |
ρ6 | 2 | 0 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 0 | 0 | orthogonal lifted from S3 |
ρ7 | 2 | 0 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | 0 | 0 | orthogonal lifted from S3 |
ρ8 | 2 | 0 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | 2 | -1 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | 0 | 0 | orthogonal lifted from S3 |
ρ9 | 2 | 0 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | 2 | -1 | -1 | -1 | 2 | 0 | 0 | orthogonal lifted from S3 |
ρ10 | 2 | 0 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | -1 | 2 | -1 | 2 | -1 | -1 | -1 | 0 | 0 | orthogonal lifted from S3 |
ρ11 | 2 | 0 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | 0 | 0 | orthogonal lifted from S3 |
ρ12 | 2 | 0 | 2 | 2 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | 0 | 0 | orthogonal lifted from S3 |
ρ13 | 2 | 0 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | 2 | -1 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | 0 | 0 | orthogonal lifted from S3 |
ρ14 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | 0 | 0 | orthogonal lifted from S3 |
ρ15 | 2 | 0 | 2 | 2 | 2 | 2 | 2 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 0 | 0 | orthogonal lifted from S3 |
ρ16 | 3 | 1 | -3+3√-3/2 | -3-3√-3/2 | -3-3√-3/2 | -3+3√-3/2 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ32 | ζ3 | complex lifted from He3⋊C2 |
ρ17 | 3 | 1 | -3-3√-3/2 | -3+3√-3/2 | -3+3√-3/2 | -3-3√-3/2 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ3 | ζ32 | complex lifted from He3⋊C2 |
ρ18 | 3 | -1 | -3-3√-3/2 | -3+3√-3/2 | -3+3√-3/2 | -3-3√-3/2 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ65 | ζ6 | complex lifted from He3⋊C2 |
ρ19 | 3 | -1 | -3+3√-3/2 | -3-3√-3/2 | -3-3√-3/2 | -3+3√-3/2 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ζ6 | ζ65 | complex lifted from He3⋊C2 |
ρ20 | 6 | 0 | -3-3√-3 | -3+3√-3 | 3-3√-3/2 | 3+3√-3/2 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ21 | 6 | 0 | -3+3√-3 | -3-3√-3 | 3+3√-3/2 | 3-3√-3/2 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(7 8 9)(10 11 12)(13 14 15)(16 17 18)
(1 6 5)(2 4 3)(7 9 8)(10 12 11)(13 14 15)(16 17 18)
(1 9 14)(2 10 18)(3 11 17)(4 12 16)(5 7 13)(6 8 15)
(1 15 7)(2 17 12)(3 16 10)(4 18 11)(5 14 8)(6 13 9)
(1 3)(2 6)(4 5)(7 16)(8 18)(9 17)(10 15)(11 14)(12 13)
G:=sub<Sym(18)| (7,8,9)(10,11,12)(13,14,15)(16,17,18), (1,6,5)(2,4,3)(7,9,8)(10,12,11)(13,14,15)(16,17,18), (1,9,14)(2,10,18)(3,11,17)(4,12,16)(5,7,13)(6,8,15), (1,15,7)(2,17,12)(3,16,10)(4,18,11)(5,14,8)(6,13,9), (1,3)(2,6)(4,5)(7,16)(8,18)(9,17)(10,15)(11,14)(12,13)>;
G:=Group( (7,8,9)(10,11,12)(13,14,15)(16,17,18), (1,6,5)(2,4,3)(7,9,8)(10,12,11)(13,14,15)(16,17,18), (1,9,14)(2,10,18)(3,11,17)(4,12,16)(5,7,13)(6,8,15), (1,15,7)(2,17,12)(3,16,10)(4,18,11)(5,14,8)(6,13,9), (1,3)(2,6)(4,5)(7,16)(8,18)(9,17)(10,15)(11,14)(12,13) );
G=PermutationGroup([[(7,8,9),(10,11,12),(13,14,15),(16,17,18)], [(1,6,5),(2,4,3),(7,9,8),(10,12,11),(13,14,15),(16,17,18)], [(1,9,14),(2,10,18),(3,11,17),(4,12,16),(5,7,13),(6,8,15)], [(1,15,7),(2,17,12),(3,16,10),(4,18,11),(5,14,8),(6,13,9)], [(1,3),(2,6),(4,5),(7,16),(8,18),(9,17),(10,15),(11,14),(12,13)]])
G:=TransitiveGroup(18,89);
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27)
(1 13 11)(2 14 12)(3 15 10)(4 26 8)(5 27 9)(6 25 7)(16 19 22)(17 20 23)(18 21 24)
(2 14 12)(3 10 15)(4 8 26)(6 25 7)(16 19 22)(17 23 20)
(1 24 5)(2 19 25)(3 17 8)(4 15 20)(6 12 16)(7 14 22)(9 11 21)(10 23 26)(13 18 27)
(2 3)(4 22)(5 24)(6 23)(7 20)(8 19)(9 21)(10 12)(14 15)(16 26)(17 25)(18 27)
G:=sub<Sym(27)| (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27), (1,13,11)(2,14,12)(3,15,10)(4,26,8)(5,27,9)(6,25,7)(16,19,22)(17,20,23)(18,21,24), (2,14,12)(3,10,15)(4,8,26)(6,25,7)(16,19,22)(17,23,20), (1,24,5)(2,19,25)(3,17,8)(4,15,20)(6,12,16)(7,14,22)(9,11,21)(10,23,26)(13,18,27), (2,3)(4,22)(5,24)(6,23)(7,20)(8,19)(9,21)(10,12)(14,15)(16,26)(17,25)(18,27)>;
G:=Group( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27), (1,13,11)(2,14,12)(3,15,10)(4,26,8)(5,27,9)(6,25,7)(16,19,22)(17,20,23)(18,21,24), (2,14,12)(3,10,15)(4,8,26)(6,25,7)(16,19,22)(17,23,20), (1,24,5)(2,19,25)(3,17,8)(4,15,20)(6,12,16)(7,14,22)(9,11,21)(10,23,26)(13,18,27), (2,3)(4,22)(5,24)(6,23)(7,20)(8,19)(9,21)(10,12)(14,15)(16,26)(17,25)(18,27) );
G=PermutationGroup([[(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27)], [(1,13,11),(2,14,12),(3,15,10),(4,26,8),(5,27,9),(6,25,7),(16,19,22),(17,20,23),(18,21,24)], [(2,14,12),(3,10,15),(4,8,26),(6,25,7),(16,19,22),(17,23,20)], [(1,24,5),(2,19,25),(3,17,8),(4,15,20),(6,12,16),(7,14,22),(9,11,21),(10,23,26),(13,18,27)], [(2,3),(4,22),(5,24),(6,23),(7,20),(8,19),(9,21),(10,12),(14,15),(16,26),(17,25),(18,27)]])
G:=TransitiveGroup(27,74);
He3⋊5S3 is a maximal subgroup of
He3⋊5D6 S3×He3⋊C2 C3.C3≀S3 C32⋊C9⋊S3 (C3×He3).C6 C34⋊3S3 (C32×C9)⋊8S3 C34⋊5S3 He3.C3⋊S3 He3⋊C3⋊2S3 He3⋊4D9 C9○He3⋊4S3 C34⋊13S3 3+ 1+4⋊3C2
He3⋊5S3 is a maximal quotient of
He3⋊6Dic3 C33⋊6D9 He3⋊4D9 C34⋊6S3 C34⋊7S3 He3.(C3⋊S3) C3⋊(He3⋊S3) (C32×C9).S3 C3≀C3⋊S3 C34⋊13S3
Matrix representation of He3⋊5S3 ►in GL5(𝔽7)
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
6 | 6 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 |
6 | 6 | 0 | 0 | 0 |
0 | 0 | 6 | 0 | 0 |
0 | 0 | 0 | 0 | 6 |
0 | 0 | 0 | 6 | 0 |
G:=sub<GL(5,GF(7))| [1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,4],[1,0,0,0,0,0,1,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,0,0,4],[1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0],[6,1,0,0,0,6,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0],[1,6,0,0,0,0,6,0,0,0,0,0,6,0,0,0,0,0,0,6,0,0,0,6,0] >;
He3⋊5S3 in GAP, Magma, Sage, TeX
{\rm He}_3\rtimes_5S_3
% in TeX
G:=Group("He3:5S3");
// GroupNames label
G:=SmallGroup(162,46);
// by ID
G=gap.SmallGroup(162,46);
# by ID
G:=PCGroup([5,-2,-3,-3,-3,-3,41,182,723,253]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^3=e^2=1,d*a*d^-1=a*b=b*a,c*a*c^-1=a*b^-1,e*a*e=a^-1,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations
Export